QuadTree.C

Go to the documentation of this file.
00001 /*!@file Learn/QuadTree.C QuadTree Multi-Class Classifier */
00002 // //////////////////////////////////////////////////////////////////// //
00003 // The iLab Neuromorphic Vision C++ Toolkit - Copyright (C) 2001 by the //
00004 // University of Southern California (USC) and the iLab at USC.         //
00005 // See http://iLab.usc.edu for information about this project.          //
00006 // //////////////////////////////////////////////////////////////////// //
00007 // Major portions of the iLab Neuromorphic Vision Toolkit are protected //
00008 // under the U.S. patent ``Computation of Intrinsic Perceptual Saliency //
00009 // in Visual Environments, and Applications'' by Christof Koch and      //
00010 // Laurent Itti, California Institute of Technology, 2001 (patent       //
00011 // pending; application number 09/912,225 filed July 23, 2001; see      //
00012 // http://pair.uspto.gov/cgi-bin/final/home.pl for current status).     //
00013 // //////////////////////////////////////////////////////////////////// //
00014 // This file is part of the iLab Neuromorphic Vision C++ Toolkit.       //
00015 //                                                                      //
00016 // The iLab Neuromorphic Vision C++ Toolkit is free software; you can   //
00017 // redistribute it and/or modify it under the terms of the GNU General  //
00018 // Public License as published by the Free Software Foundation; either  //
00019 // version 2 of the License, or (at your option) any later version.     //
00020 //                                                                      //
00021 // The iLab Neuromorphic Vision C++ Toolkit is distributed in the hope  //
00022 // that it will be useful, but WITHOUT ANY WARRANTY; without even the   //
00023 // implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR      //
00024 // PURPOSE.  See the GNU General Public License for more details.       //
00025 //                                                                      //
00026 // You should have received a copy of the GNU General Public License    //
00027 // along with the iLab Neuromorphic Vision C++ Toolkit; if not, write   //
00028 // to the Free Software Foundation, Inc., 59 Temple Place, Suite 330,   //
00029 // Boston, MA 02111-1307 USA.                                           //
00030 // //////////////////////////////////////////////////////////////////// //
00031 //
00032 // Primary maintainer for this file: John Shen <shenjohn@usc.edu>
00033 // $HeadURL$
00034 // $Id$
00035 //
00036 // Implementation of the segmentation algorithm described in:
00037 //
00038 // Recursive Segmentation and Recognition Templates for 2D Parsing
00039 // Leo Zhu, Yuanhao Chen, Yuan Lin, Chenxi Lin, Alan Yuille
00040 // Advances in Neural Information Processing Systems, 2008
00041 // 
00042 
00043 #include "Channels/IntensityChannel.H"
00044 #include "Channels/InputFrame.H"
00045 #include "Channels/ChannelOpts.H"
00046 #include "Component/ModelManager.H"
00047 #include "GUI/DebugWin.H"
00048 #include "Image/ColorMap.H" // for colorize()
00049 #include "Image/ColorOps.H" // for colorize()
00050 #include "Image/CutPaste.H" // for inplaceEmbed()
00051 #include "Image/Dims.H"
00052 #include "Image/Image.H"
00053 #include "Image/LevelSpec.H"
00054 #include "Image/MathOps.H" // for absDiff()
00055 #include "Image/Pixels.H"
00056 #include "Image/Point3D.H"
00057 #include "Learn/QuadTree.H"
00058 #include "Util/log.H"
00059 #include "Util/StringConversions.H"
00060 
00061 #include <cmath>
00062 #include <vector>
00063 #include <queue> // for DP queue
00064 #include <iostream>
00065 #include <algorithm> // for std::swap 
00066 
00067 // ######################################################################
00068 QuadTree::QuadTree(int Nlevels, Dims d) : itsNumLevels(Nlevels)
00069 {
00070   // initialize tree
00071   rutz::shared_ptr<QuadNode> root_ref(new QuadNode()); //this is the temporary top, no ptrs initialized
00072   Rectangle thisWindow(Point2D<int>(0,0), d);
00073   addTreeUnder(root_ref, Nlevels, thisWindow);
00074   
00075   itsRootNode = root_ref->getChild(0);
00076   initAlphas();
00077 }
00078 
00079 // ######################################################################
00080 QuadTree::QuadTree(int Nlevels, Image<PixRGB<byte> > im) : itsNumLevels(Nlevels)
00081 {
00082   // QuadTree::QuadTree(Nlevels, im.getDims());
00083   Dims d = im.getDims();
00084 
00085   // initialize tree
00086   rutz::shared_ptr<QuadNode> root_ref(new QuadNode()); //this is the temporary top, no ptrs initialized
00087   Rectangle thisWindow(Point2D<int>(0,0), d);
00088   addTreeUnder(root_ref, Nlevels, thisWindow);
00089   
00090   itsRootNode = root_ref->getChild(0);
00091 
00092   itsImage = im;
00093   initAlphas();
00094 }
00095 
00096 // ######################################################################
00097 void QuadTree::addTreeUnder(rutz::shared_ptr<QuadNode> parent, int Nlevel, Rectangle r)
00098 {
00099   // initialize node
00100   rutz::shared_ptr<QuadNode> myNewNode(new QuadNode(parent));
00101   myNewNode->setArea(r);
00102   myNewNode->setDepth(itsNumLevels-Nlevel);
00103 
00104   // add to tree
00105   parent->addChild(myNewNode);
00106 
00107   // add to internal deque
00108   itsNodes.push_back(myNewNode);
00109 
00110   // if there are levels below, add sub-trees to this node
00111   if (Nlevel > 0) {
00112     // find 4 smaller rectangles
00113     Point2D<int> middle = r.center();
00114     
00115     Rectangle tl = Rectangle::tlbrO(r.top(),r.left(),middle.j,middle.i);
00116     Rectangle tr = Rectangle::tlbrO(r.top(),middle.i,middle.j,r.rightO());
00117     Rectangle bl = Rectangle::tlbrO(middle.j,r.left(),r.bottomO(),middle.i);
00118     Rectangle br = Rectangle::tlbrO(middle.j,middle.i,r.bottomO(),r.rightO());
00119 
00120     addTreeUnder(myNewNode, Nlevel - 1, tl);
00121     addTreeUnder(myNewNode, Nlevel - 1, tr);
00122     addTreeUnder(myNewNode, Nlevel - 1, bl);
00123     addTreeUnder(myNewNode, Nlevel - 1, br);
00124   }
00125 }
00126 
00127 // ######################################################################
00128 void QuadTree::cacheClassifierResult()
00129 {
00130   uint NClasses = itsClassifier->getNumClasses();
00131   Image<double> output(itsImage.getDims(),ZEROS);
00132   Image<double> denom(itsImage.getDims(),ZEROS);
00133   Dims patch_size(5,5);
00134   Image<PixRGB<byte> > patch(patch_size,ZEROS);
00135   Rectangle im_rect(Point2D<int>(0,0), itsImage.getDims());
00136 
00137   itsClassifierOutput.clear();
00138   itsBestClassOutput.resize(itsImage.getDims());
00139   for(uint i = 0; i < NClasses; i++) 
00140     itsClassifierOutput.push_back(output);
00141 
00142   Point2D<int> P_l; // local coords
00143   for(P_l.i = 0; P_l.i < itsImage.getWidth(); P_l.i++) 
00144     for(P_l.j = 0; P_l.j < itsImage.getHeight(); P_l.j++) {
00145       
00146       Rectangle rect_patch = Rectangle::centerDims(P_l, patch_size);
00147       rect_patch = constrainRect(rect_patch, im_rect,0,itsImage.getWidth(),0,itsImage.getHeight());
00148       patch = crop(itsImage, rect_patch);
00149       
00150       byte best_class = 0;
00151       for(uint i = 0; i < NClasses; i++) {
00152         double res = itsClassifier->classifyAt(patch, i);
00153         if(res > itsClassifierOutput[best_class][P_l]) 
00154           best_class = i;
00155         
00156         itsClassifierOutput[i][P_l] = res;
00157         // get partition denominator
00158         denom[P_l] += exp(res);
00159       }    
00160       itsBestClassOutput[P_l] = best_class;
00161     }
00162   
00163   for(uint i = 0; i < NClasses; i++) 
00164     itsClassifierOutput[i] = exp(itsClassifierOutput[i])/denom; 
00165 }
00166 
00167 // ######################################################################
00168 double QuadTree::evaluateClassifierAt(rutz::shared_ptr<QuadNode> q) const
00169 {
00170   int Npts = itsImage.getDims().sz();
00171   double E = 0;
00172   Point2D<int> P_l, P_g; // local coords
00173   for(P_l.i = 0; P_l.i < itsImage.getWidth(); P_l.i++) 
00174     for(P_l.j = 0; P_l.j < itsImage.getHeight(); P_l.j++) {
00175       P_g = q->convertToGlobal(P_l);
00176       E -= log(itsClassifierOutput[q->getObjLabelAt(P_g)][P_l]);
00177     }
00178   
00179   return E/Npts;
00180 }
00181 
00182 // ######################################################################
00183 double QuadTree::evaluateCohesionAt(rutz::shared_ptr<QuadNode> q) const
00184 {
00185   // a negative energy term where pixels that belong to the same partitions have similar appearance
00186   // loop over all pairs of points in the image at that quadnode
00187   Neighborhood one_away;
00188   //  one_away.push_back(Point2D<int>(-1,-1));
00189   //one_away.push_back(Point2D<int>(-1,0));
00190   //one_away.push_back(Point2D<int>(-1,1));
00191   //one_away.push_back(Point2D<int>(0,-1));
00192   const float lambda = 1; // term weighting the importance of "cohesion" relative to the other energy terms, might depend on scale
00193   const float sigma_col = 75; // the gaussian st-dev in color space
00194   const Point2D<int> origin(0,0);
00195   float e_coh = 0;
00196 
00197   one_away.push_back(Point2D<int>(0,1));
00198   one_away.push_back(Point2D<int>(1,-1));
00199   one_away.push_back(Point2D<int>(1,0));
00200   one_away.push_back(Point2D<int>(1,1));
00201 
00202 
00203   Image<byte> segImage = q->getSegImage();
00204 
00205   int nedges = 0;
00206   //  int n_same = 0;
00207   //int N_bad = 0;
00208 
00209   Point2D<int> P_l,Q_l, P_g, Q_g; // local and global coords
00210   for(P_l.i = 0; P_l.i < segImage.getWidth(); P_l.i++) {
00211     for(P_l.j = 0; P_l.j < segImage.getHeight(); P_l.j++) {
00212       for(uint k = 0; k < one_away.size(); k++) {
00213         // calculate the points
00214         Q_l = P_l + one_away[k];
00215         P_g = q->convertToGlobal(P_l);
00216         Q_g = q->convertToGlobal(Q_l);
00217 
00218         if (!segImage.coordsOk(Q_l)) continue; // if Q is out of bounds, skip
00219         
00220         nedges++; // count the edge
00221         //if P and Q are not in the same segment, skip
00222         if(segImage[P_l] != segImage[Q_l]) continue; 
00223         
00224         // the computation of the energy term   
00225         double color_dist = colorDistance(itsImage[P_g], itsImage[Q_g]);
00226         double space_dist = one_away[k].distance(origin);
00227         e_coh -= lambda / space_dist * exp(- color_dist * color_dist / (2 * sigma_col * sigma_col));
00228       }
00229     }
00230   }
00231   return e_coh / nedges;
00232 }
00233 
00234 // ######################################################################
00235 double QuadTree::evaluateCorrespondenceAt(rutz::shared_ptr<QuadNode> q) const
00236 {
00237   if(q->isLeaf()) return 0;
00238 
00239   Point2D<int> P_l,Q_l, P_g, Q_g; // local and global coords
00240   Image<byte> parentImage = q->getSegImage();
00241   Image<byte> childImage = q->getChildSegImage();
00242   
00243   Image<byte> deltaImage = absDiff(parentImage, childImage);
00244   double ret = double(-emptyArea(deltaImage))/deltaImage.getDims().sz();
00245         
00246   return ret;
00247 }
00248 
00249 // ######################################################################
00250 double QuadTree::evaluateTotalEnergyAt(rutz::shared_ptr<QuadNode> q) const
00251 {
00252   double E = evaluateClassifierAt(q) * itsAlphas[0];
00253   E += evaluateCohesionAt(q) * itsAlphas[1];
00254   E += evaluateCorrespondenceAt(q) * itsAlphas[2];
00255 
00256   if(q->isLeaf()) return E;
00257   for(uint i = 0; i < 4; i++)
00258     E += evaluateTotalEnergyAt(q->getChild(i));
00259 
00260   return E;
00261 }
00262 
00263 // ######################################################################
00264 void QuadTree::printTree() const 
00265 {
00266   LINFO("Tree of depth %u, number of nodes %zu", itsNumLevels, itsNodes.size());
00267   // NB: not a traversal for now, just reading off the queue
00268   for(uint i = 0; i < itsNodes.size(); i++) 
00269     LINFO("%s", toStr(*itsNodes[i]).c_str());
00270   
00271 }
00272 
00273 // ######################################################################
00274 std::string QuadTree::writeTree() const 
00275 {
00276   std::string ret = "";
00277   ret += sformat("Tree of depth %u, number of nodes %zu\n", itsNumLevels, itsNodes.size());
00278   // NB: not a traversal for now, just reading off the queue
00279   for(uint i = 0; i < itsNodes.size(); i++) 
00280     ret += sformat("%s\n", toStr(*itsNodes[i]).c_str());
00281   
00282   return ret;
00283 }
00284 
00285 // ######################################################################
00286 std::vector<QuadNode::NodeState> QuadTree::generateProposalsAt(rutz::shared_ptr<QuadNode> q, double thresh)
00287 {
00288   // this code is just for the leaf nodes right now
00289   uint NClasses = itsClassifier->getNumClasses();
00290 
00291   if(!q->isLeaf()) { //combine proposals
00292     for(uint i = 0; i < 4; i++) { // children loop
00293       std::vector<QuadNode::NodeState> child_props = generateProposalsAt(q->getChild(i), thresh);
00294       if(child_props.size() == 0) LFATAL("no proposals made for node %s", toStr(q->getChild(i)).c_str());
00295       q->getChild(i)->setState(child_props[0]);
00296     }
00297   }
00298   
00299   QuadNode::NodeState probe(0,0,1,2), realstate = q->getState();
00300   std::vector<QuadNode::NodeState> ret;
00301   
00302   // try fitting each template first
00303   //  uint common[3][NClasses];
00304 
00305   byte top_class[3][NClasses];  
00306   uint prevalence[3][NClasses];
00307   Rectangle r = q->getArea();
00308   
00309   if(1) {
00310     for(; probe.segTemplate < 30; probe.segTemplate++) {
00311 
00312       //clear prevalence
00313       for(uint i = 0; i < 3; i++) 
00314         for(uint j= 0; j < NClasses; j++) {
00315           prevalence[i][j]=0;         
00316           top_class[i][j]=j;
00317         }
00318       
00319       // find the frequency of each label for each region in the classifier
00320       for(uint i = 0; i < 3; i++) probe.objLabels[i] = i;
00321       
00322       q->setState(probe); //initialize just for counting purposes
00323       
00324       Point2D<int> P_g;
00325       for(P_g.i = r.left(); P_g.i < r.rightO(); P_g.i++) 
00326         for(P_g.j = r.top(); P_g.j < r.bottomO(); P_g.j++) 
00327           prevalence[q->getObjLabelAt(P_g)][itsBestClassOutput[P_g]]++;  
00328       
00329       // sort each entry by the class prevalence 
00330       for(uint i = 0; i < 3; i ++)  {
00331         for(uint j = 0; j < NClasses; j++) {
00332           for(uint k = 0; k < NClasses-j-1; k++)
00333             if(prevalence[i][k] < prevalence[i][k+1])
00334               {
00335                 std::swap(top_class[i][k], top_class[i][k+1]);
00336                 std::swap(prevalence[i][k], prevalence[i][k+1]);
00337               }      
00338         } 
00339       }    
00340       
00341       // finding proposals - DP setup
00342       std::queue<Point3D<uint> > tryme;    
00343       bool tested[NClasses][NClasses][NClasses];
00344       for(uint i = 0; i < NClasses; i++) 
00345         for(uint j = 0; j < NClasses; j++) 
00346           for(uint k = 0; k < NClasses; k++) 
00347             tested[i][j][k] = false;
00348       
00349       uint area = r.area();
00350       const double occ_tol = 0.0001;
00351       for(uint i = 0; i < NClasses; i++) {
00352         if(prevalence[0][0] - prevalence[0][i] > occ_tol * area) break;
00353         for(uint j = 0; j < NClasses; j++) {
00354           if(prevalence[1][0] - prevalence[1][j] > occ_tol * area) break; 
00355           for(uint k = 0; k < NClasses; k++) {
00356             if(prevalence[2][0] - prevalence[2][k] > occ_tol * area) break;
00357             tryme.push(Point3D<uint>(i,j,k));
00358             if(probe.isDoubleton()) break; //the last label doesn't matter
00359           }
00360           if(probe.isSingleton()) break; // the 2nd to last label doesn't matter
00361         }
00362       }
00363       while(!tryme.empty()) {
00364         Point3D<uint> n = tryme.front();
00365         tryme.pop();
00366         
00367         if(tested[n.x][n.y][n.z]) continue;
00368         if(n.x >= NClasses || n.y >= NClasses || n.z >= NClasses) continue;
00369         probe.objLabels[0] = top_class[0][n.x];
00370         probe.objLabels[1] = top_class[1][n.y];
00371         probe.objLabels[2] = top_class[2][n.z];
00372         q->setState(probe);
00373         q->storeEnergy(evaluateTotalEnergyAt(q));
00374         //      probe.evaled = true;
00375         tested[n.x][n.y][n.z]=true;
00376         
00377         if(q->getEnergy() < thresh) {
00378           probe.E = q->getEnergy();
00379           ret.push_back(probe);
00380           tryme.push(Point3D<uint>(n.x+1,n.y,n.z));
00381           if(!probe.isSingleton()) tryme.push(Point3D<uint>(n.x,n.y+1,n.z));
00382           if(!probe.isDoubleton()) tryme.push(Point3D<uint>(n.x,n.y,n.z+1));
00383         }
00384       }
00385     } //end seg template loop    
00386 
00387     for(uint j = 0; j < ret.size(); j++) 
00388       for(uint k = 0; k < ret.size()-j-1; k++)
00389         if(ret[k].E > ret[k+1].E)
00390           std::swap(ret[k],ret[k+1]); 
00391 
00392     q->setState(realstate);
00393   }
00394   return ret;
00395 }
00396 
00397 // ######################################################################
00398 QuadNode::QuadNode() : itsIsStale(true), itsState(0)
00399 {
00400   for(uint i = 0; i < 3; i++) itsState.objLabels.push_back(i);
00401 }
00402 
00403 // ######################################################################
00404 QuadNode::QuadNode(rutz::shared_ptr<QuadNode> q) 
00405   : itsIsLeaf(true), itsIsStale(true),
00406     itsState(0), 
00407     itsParent(q)
00408 {
00409   for(uint i = 0; i < 3; i++) itsState.objLabels.push_back(i);
00410 } 
00411 
00412 // ######################################################################
00413 QuadNode::QuadNode(rutz::shared_ptr<QuadNode> q, NodeState n) 
00414   : itsIsLeaf(true), itsIsStale(true),
00415     itsState(n), 
00416     itsParent(q)
00417 {
00418 } 
00419 
00420 // ######################################################################
00421 Image<byte> QuadNode::getChildSegImage() 
00422 {
00423   if(isLeaf()) return getSegImage();
00424   Image<byte> ret(getArea().dims(),ZEROS);
00425   for(uint i = 0; i < 4; i++) {
00426     rutz::shared_ptr<QuadNode> child = getChild(i);
00427     inplaceEmbed(ret, child->getSegImage(), child->getArea(),byte(-1));
00428   }
00429   return ret;
00430 }
00431 
00432 // ######################################################################
00433 Image<PixRGB<byte> > QuadNode::getColorizedSegImage()
00434 {
00435   return colorLabels(getSegImage());
00436 }
00437 
00438 // ######################################################################
00439 Image<PixRGB<byte> > QuadNode::getColorizedChildSegImage() 
00440 {
00441   return colorLabels(getChildSegImage());
00442 }
00443 
00444 // ######################################################################
00445 void QuadNode::refreshSegImage() 
00446 {
00447   ASSERT(itsState.objLabels.size() > 0);
00448 
00449   Image<byte> ret(itsArea.dims(),NO_INIT);
00450   Point2D<int> P_local;
00451   for(P_local.i = 0; P_local.i < itsArea.dims().w(); P_local.i++) 
00452     for (P_local.j = 0; P_local.j < itsArea.dims().h(); P_local.j++) 
00453       ret[P_local] = getObjLabelAt(convertToGlobal(P_local));
00454       
00455   itsSegImage = ret;
00456   itsIsStale = false;
00457 }
00458 
00459 // ######################################################################
00460 Image<PixRGB<byte> > QuadNode::colorLabels(Image<byte> im) const
00461 {
00462   ColorMap cm(256);
00463   PixRGB<byte> col;
00464   for(uint i = 2; i <= 2; i--) { // NB: once we get a classifier, we will need a real colormap instead of an adhoc one, this 
00465     col = PixRGB<byte>(0,0,0);
00466     col[i] = 255;
00467     cm[i] = col;
00468   }
00469   return colorize(im, cm);
00470 }
00471 
00472 // ######################################################################
00473 byte QuadNode::getObjLabelAt(Point2D<int> loc) const
00474 {
00475   // TODO: move this logic to drawing the template all at once 
00476 
00477   // check if point resides in the area
00478   if(!itsArea.contains(loc)) {
00479     LINFO("Node at window (%s) does not contain point (%s)", 
00480           toStr(itsArea).c_str(), toStr(loc).c_str());
00481     return -1;
00482   }
00483 
00484   // result is already memoized
00485   if(!itsIsStale) { 
00486     return itsSegImage[convertToLocal(loc)];
00487   }
00488 
00489   //convert point to [0,1] x [0,1] (scaled) coordinates;
00490   Point2D<double> intLoc(double(loc.i-itsArea.left())/(itsArea.width()),
00491                          double(loc.j-itsArea.top())/(itsArea.height()));
00492   
00493   uint iST = itsState.segTemplate;
00494   byte lvl = 0, lvl1, lvl2;
00495   double keydim1 = 0, keydim2 = 0;
00496 
00497   if (iST == 0) 
00498     lvl = 0;
00499   else if(iST == 1 || iST == 2) {
00500     // horizontal/vertical edges
00501     if(iST == 1) keydim1 = intLoc.i;
00502     else keydim1 = intLoc.j;
00503     lvl = keydim1 * 3;
00504   }
00505   else if(iST == 3 || iST == 4) {
00506     //diagonal edges
00507     if(iST == 3) keydim1 = intLoc.i+intLoc.j-1;
00508     else keydim1 = intLoc.j-intLoc.i;
00509     lvl = (keydim1 < 0) ? 0 : 1;
00510   }
00511   else if(iST == 5) {
00512     //box inside another box
00513     keydim1 = fabs(intLoc.i - 0.5); 
00514     keydim2 = fabs(intLoc.j - 0.5);
00515     lvl1 = keydim1 < 0.25 ? 1 : 0;
00516     lvl2 = keydim2 < 0.25 ? 1 : 0;
00517     lvl = lvl1 * lvl2;
00518   }
00519   else if (iST >= 6 && iST <= 9) {
00520     //V-junctions
00521     switch(iST) {
00522     case 6:
00523       keydim1 = intLoc.i;
00524       keydim2 = intLoc.j;
00525       break;
00526     case 7:
00527       keydim1 = 1-intLoc.i;
00528       keydim2 = intLoc.j;
00529       break;
00530     case 8:
00531       keydim1 = intLoc.j;
00532       keydim2 = intLoc.i;
00533       break;
00534     case 9:
00535       keydim1 = 1-intLoc.j;
00536       keydim2 = intLoc.i;
00537       break;
00538     }
00539     lvl1 = (2*keydim2 - keydim1) < 0 ? 0 : 1;
00540     lvl2 = (2*keydim2 - 2 + keydim1) < 0 ? 0 : 1;
00541     lvl = lvl1 + lvl2;
00542   }
00543   else if (iST >= 10 && iST <= 13) {
00544     //diagonal orientations
00545     if(iST == 10 || iST == 12) keydim1 = intLoc.i + intLoc.j - 1;
00546     else keydim1 = intLoc.j - intLoc.i;
00547 
00548     if(iST == 10 || iST == 11) {
00549       lvl1 = (keydim1 < -0.5) ? 0 : 1;
00550       lvl2 = (keydim1 < 0.5) ? 0 : 1;
00551     }
00552     else {
00553       lvl1 = (keydim1 < -0.25) ? 0 : 1;
00554       lvl2 = (keydim1 < 0.25) ? 0 : 1;
00555     }
00556     lvl = lvl1 + lvl2;
00557   }
00558   else if (iST >= 18 && iST <= 21) {
00559     //Y-junctions
00560     switch(iST) {
00561     case 18:
00562       keydim1 = intLoc.i;
00563       keydim2 = intLoc.j-fabs(intLoc.i-0.5);
00564       break;
00565     case 19:
00566       keydim1 = intLoc.j;
00567       keydim2 = intLoc.i-fabs(intLoc.j-0.5);
00568       break;
00569     case 20:
00570       keydim1 = intLoc.i;
00571       keydim2 = 1-intLoc.j-fabs(intLoc.i-0.5);
00572       break;
00573     case 21:
00574       keydim1 = intLoc.j;
00575       keydim2 = 1-intLoc.i-fabs(intLoc.j-0.5);
00576       break;
00577     }    
00578     lvl1 = (keydim2 > 0.5) ? 0 : 1;
00579     lvl2 = (keydim1 < 0.5) ? 1 : 2;
00580     lvl = lvl1*lvl2;
00581   }
00582   else {
00583     // T-junctions
00584     switch(iST) {
00585     case 14:
00586     case 22:
00587     case 26:
00588       keydim1 = intLoc.j;
00589       keydim2 = intLoc.i;
00590       break;
00591     case 15:
00592     case 25:
00593     case 29:
00594       keydim1 = intLoc.i;
00595       keydim2 = intLoc.j;
00596       break;
00597     case 16:
00598     case 24:
00599     case 28:
00600       keydim1 = 1-intLoc.j;
00601       keydim2 = intLoc.i;
00602       break;
00603     case 17:
00604     case 23:
00605     case 27:
00606       keydim1 = 1-intLoc.i;
00607       keydim2 = intLoc.j;
00608       break;
00609     }
00610 
00611     switch(iST) {
00612     case 14:
00613     case 15:
00614     case 16:
00615     case 17:
00616       lvl1 = (keydim1 < 0.5) ? 0 : 1;
00617       lvl2 = (keydim2 < 0.5) ? 1 : 2;
00618       lvl = lvl1 * lvl2;
00619       break;
00620     case 22:
00621     case 23:
00622     case 24:
00623     case 25:
00624       lvl1 = (3 * keydim1 < 2) ? 0 : 1;
00625       lvl2 = (keydim2 < 0.5) ? 1 : 2;
00626       lvl = lvl1 * lvl2;
00627       break;
00628     case 26:
00629     case 27:
00630     case 28:
00631     case 29:
00632       lvl1 = (keydim1 < 0.25) ? 0 : 1;
00633       lvl2 = (keydim2 < 0.5) ? 1 : 2;
00634       lvl = lvl1 * lvl2;
00635       break;
00636     }
00637   }               
00638 
00639   return itsState.objLabels[lvl];
00640 }
00641 
00642 // ######################################################################
00643 // #### ColorPixelClassifier
00644 // ######################################################################
00645 
00646 ColorPixelClassifier::ColorPixelClassifier() : PixelClassifier() 
00647 {}
00648 
00649 // ######################################################################
00650 double ColorPixelClassifier::classifyAt(Image<PixRGB<byte> > im, uint C)
00651 {
00652   ASSERT(C < itsNumClasses);
00653   ColorCat cc = itsCats[C];
00654   Point2D<int> center(im.getWidth()/2, im.getHeight()/2);
00655   double dist = colorL2Distance(im[center],cc.color);
00656   return -dist / cc.sig_cdist;
00657 }
00658 
00659 // ######################################################################
00660 // #### GistPixelClassifier
00661 // ######################################################################
00662 
00663 GistPixelClassifier::GistPixelClassifier() : PixelClassifier()
00664 {
00665   
00666 }
00667 
00668 // ######################################################################
00669 
00670 void GistPixelClassifier::learnInput(Image<PixRGB<byte> > im, Image<uint> labels)
00671 {
00672 }
00673 
00674 // ######################################################################
00675 double GistPixelClassifier::classifyAt(Image<PixRGB<byte> > im, uint C)
00676 { 
00677   return 0;
00678 }
00679 // Free functions:
00680 // ######################################################################
00681 
00682 // ######################################################################
00683 std::string convertToString(const QuadNode &q)
00684 {
00685   std::string ret = "";
00686   for(uint i = 0; i < q.getDepth(); i++) ret+='\t';
00687   return ret + "(" + toStr(q.getArea()) + "): " + 
00688     "seg class " + toStr(q.getState());
00689 }
00690 
00691 // ######################################################################
00692 std::string convertToString(const QuadNode::NodeState& n)
00693 {
00694   return convertToString(n.segTemplate) + " :(" + 
00695     convertToString(n.objLabels[0]) + "," +
00696     convertToString(n.objLabels[1]) + "," +
00697     convertToString(n.objLabels[2]) + ")";
00698 }
00699 
00700 /* So things look consistent in everyone's emacs... */
00701 /* Local Variables: */
00702 /* indent-tabs-mode: nil */
00703 /* End: */
Generated on Sun May 8 08:40:58 2011 for iLab Neuromorphic Vision Toolkit by  doxygen 1.6.3