00001 /*!@file TIGS/BackpropLearner.C Learn feature/position pairings with a backprop-training neural network */ 00002 00003 // //////////////////////////////////////////////////////////////////// // 00004 // The iLab Neuromorphic Vision C++ Toolkit - Copyright (C) 2000-2005 // 00005 // by the University of Southern California (USC) and the iLab at USC. // 00006 // See http://iLab.usc.edu for information about this project. // 00007 // //////////////////////////////////////////////////////////////////// // 00008 // Major portions of the iLab Neuromorphic Vision Toolkit are protected // 00009 // under the U.S. patent ``Computation of Intrinsic Perceptual Saliency // 00010 // in Visual Environments, and Applications'' by Christof Koch and // 00011 // Laurent Itti, California Institute of Technology, 2001 (patent // 00012 // pending; application number 09/912,225 filed July 23, 2001; see // 00013 // http://pair.uspto.gov/cgi-bin/final/home.pl for current status). // 00014 // //////////////////////////////////////////////////////////////////// // 00015 // This file is part of the iLab Neuromorphic Vision C++ Toolkit. // 00016 // // 00017 // The iLab Neuromorphic Vision C++ Toolkit is free software; you can // 00018 // redistribute it and/or modify it under the terms of the GNU General // 00019 // Public License as published by the Free Software Foundation; either // 00020 // version 2 of the License, or (at your option) any later version. // 00021 // // 00022 // The iLab Neuromorphic Vision C++ Toolkit is distributed in the hope // 00023 // that it will be useful, but WITHOUT ANY WARRANTY; without even the // 00024 // implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR // 00025 // PURPOSE. See the GNU General Public License for more details. // 00026 // // 00027 // You should have received a copy of the GNU General Public License // 00028 // along with the iLab Neuromorphic Vision C++ Toolkit; if not, write // 00029 // to the Free Software Foundation, Inc., 59 Temple Place, Suite 330, // 00030 // Boston, MA 02111-1307 USA. // 00031 // //////////////////////////////////////////////////////////////////// // 00032 // 00033 // Primary maintainer for this file: Rob Peters <rjpeters at usc dot edu> 00034 // $HeadURL: svn://isvn.usc.edu/software/invt/trunk/saliency/src/TIGS/BackpropLearner.C $ 00035 // $Id: BackpropLearner.C 5883 2005-11-07 18:55:58Z rjpeters $ 00036 // 00037 00038 #ifndef TIGS_BACKPROPLEARNER_C_DEFINED 00039 #define TIGS_BACKPROPLEARNER_C_DEFINED 00040 00041 #include "TIGS/BackpropLearner.H" 00042 00043 #include "Image/MathOps.H" 00044 #include "Image/MatrixOps.H" // for transpose() 00045 #include "Learn/BackpropNetwork.H" 00046 #include "TIGS/LeastSquaresLearner.H" 00047 #include "TIGS/TrainingSet.H" 00048 #include "rutz/trace.h" 00049 00050 BackpropLearner::BackpropLearner(OptionManager& mgr) 00051 : 00052 TopdownLearner(mgr, "BackpropLearner", "BackpropLearner"), 00053 itsLsq(new LeastSquaresLearner(mgr)), 00054 itsNetwork(0), 00055 itsInRange(0.0f, 1.0f), 00056 itsOutRange(0.0f, 1.0f) 00057 { 00058 itsLsq->dontSave(); 00059 } 00060 00061 BackpropLearner::~BackpropLearner() 00062 { 00063 delete itsNetwork; 00064 } 00065 00066 Image<float> BackpropLearner::getBiasMap(const TrainingSet& tdata, 00067 const Image<float>& features) const 00068 { 00069 GVX_TRACE(__PRETTY_FUNCTION__); 00070 00071 if (itsNetwork == 0) 00072 { 00073 itsNetwork = new BackpropNetwork; 00074 00075 const int nhidden = 100; 00076 const float eta = 0.5f; 00077 const float alph = 0.5f; 00078 const int iters = 3000; 00079 00080 Image<float> XX = itsLsq->getBiasMap(tdata, 00081 tdata.getFeatures()); 00082 00083 double preE = RMSerr(XX, tdata.getPositions()); 00084 double preC = corrcoef(XX, tdata.getPositions()); 00085 LINFO("preE=%f, preC=%f", preE, preC); 00086 00087 Image<float> X = transpose(XX); 00088 Image<float> D = transpose(tdata.getPositions()); 00089 00090 itsInRange = rangeOf(X); 00091 itsOutRange = rangeOf(D); 00092 00093 X = remapRange(X, itsInRange, Range<float>(0.0f, 1.0f)); 00094 D = remapRange(D, itsOutRange, Range<float>(0.0f, 1.0f)); 00095 00096 double E, C; 00097 itsNetwork->train(X, D, nhidden, eta, alph, iters, &E, &C); 00098 00099 LINFO("E=%f, C=%f", E, C); 00100 } 00101 00102 Image<float> ff = transpose(itsLsq->getBiasMap(tdata, features)); 00103 ff = remapRange(ff, itsInRange, Range<float>(0.0f, 1.0f)); 00104 Image<float> bb = transpose(itsNetwork->compute(ff)); 00105 bb = remapRange(bb, Range<float>(0.0f, 1.0f), itsOutRange); 00106 return bb; 00107 } 00108 00109 // ###################################################################### 00110 /* So things look consistent in everyone's emacs... */ 00111 /* Local Variables: */ 00112 /* mode: c++ */ 00113 /* indent-tabs-mode: nil */ 00114 /* End: */ 00115 00116 #endif // TIGS_BACKPROPLEARNER_C_DEFINED