00001 // //////////////////////////////////////////////////////////////////// // 00002 // The iLab Neuromorphic Vision C++ Toolkit - Copyright (C) 2000-2005 // 00003 // by the University of Southern California (USC) and the iLab at USC. // 00004 // See http://iLab.usc.edu for information about this project. // 00005 // //////////////////////////////////////////////////////////////////// // 00006 // Major portions of the iLab Neuromorphic Vision Toolkit are protected // 00007 // under the U.S. patent ``Computation of Intrinsic Perceptual Saliency // 00008 // in Visual Environments, and Applications'' by Christof Koch and // 00009 // Laurent Itti, California Institute of Technology, 2001 (patent // 00010 // pending; application number 09/912,225 filed July 23, 2001; see // 00011 // http://pair.uspto.gov/cgi-bin/final/home.pl for current status). // 00012 // //////////////////////////////////////////////////////////////////// // 00013 // This file is part of the iLab Neuromorphic Vision C++ Toolkit. // 00014 // // 00015 // The iLab Neuromorphic Vision C++ Toolkit is free software; you can // 00016 // redistribute it and/or modify it under the terms of the GNU General // 00017 // Public License as published by the Free Software Foundation; either // 00018 // version 2 of the License, or (at your option) any later version. // 00019 // // 00020 // The iLab Neuromorphic Vision C++ Toolkit is distributed in the hope // 00021 // that it will be useful, but WITHOUT ANY WARRANTY; without even the // 00022 // implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR // 00023 // PURPOSE. See the GNU General Public License for more details. // 00024 // // 00025 // You should have received a copy of the GNU General Public License // 00026 // along with the iLab Neuromorphic Vision C++ Toolkit; if not, write // 00027 // to the Free Software Foundation, Inc., 59 Temple Place, Suite 330, // 00028 // Boston, MA 02111-1307 USA. // 00029 // //////////////////////////////////////////////////////////////////// // 00030 // 00031 // Primary maintainer for this file: Lior Elazary <elazary@usc.edu> 00032 // $HeadURL: svn://isvn.usc.edu/software/invt/trunk/saliency/src/Apps/BorderWatch/ImageInfo.H $ 00033 // $Id: ImageInfo.H 12962 2010-03-06 02:13:53Z irock $ 00034 // 00035 00036 00037 #ifndef IMAGEINFO_H_DEFINED 00038 #define IMAGEINFO_H_DEFINED 00039 00040 #include "Component/ModelComponent.H" 00041 #include "Component/ModelOptionDef.H" 00042 #include "Component/ModelParam.H" 00043 #include "Image/Image.H" 00044 #include "Image/MathOps.H" 00045 #include "Image/Pixels.H" 00046 #include "Image/PixelsTypes.H" 00047 #include "Image/Point2D.H" 00048 #include "Neuro/VisualCortexConfigurator.H" 00049 #include "Simulation/SimModule.H" 00050 00051 #include <vector> 00052 00053 class SimEventQueue; 00054 00055 //! Monitor an image over time, to detect interesting events 00056 class ImageInfo : public SimModule 00057 { 00058 public: 00059 //! Various statistical measures of interestingness returned by this object 00060 struct ImageStats 00061 { 00062 Image<float> smap; 00063 float saliency; 00064 Point2D<int> salpoint; 00065 float energy; 00066 float uniqueness; 00067 float entropy; 00068 float rand; 00069 float KLsurprise; 00070 float MSDsurprise; 00071 Image<float> belief1; 00072 Image<float> belief2; 00073 00074 float score; // compound score combining all above metrics 00075 }; 00076 00077 //! Constructor 00078 ImageInfo(OptionManager& mgr, 00079 const std::string& descrName = "ImageInfo", const std::string& tagName = "ImageInfo"); 00080 00081 //! Destructor 00082 virtual ~ImageInfo(); 00083 00084 // Recompute the score of the chip by passing it a new image to process 00085 ImageStats update(nub::ref<SimEventQueue>& q, const Image<PixRGB<byte> >& img, const int frameID); 00086 00087 private: 00088 // Apply a kalman filter to the input image and set a mu and sigma belief image 00089 float integrateData(const Image<float> &data, const float R, const float Q, 00090 Image<float>& bel_mu, Image<float>& bel_sig); 00091 00092 Image<float> itsBelief1Mu; // Mean and variance maps over two timescales uses to compute 00093 Image<float> itsBelief1Sig; // the probability of a target 00094 Image<float> itsBelief2Mu; // 00095 Image<float> itsBelief2Sig; // 00096 00097 // Compute a mean square difference between the previous saliency map and the current one 00098 float updateMSDiff(const Image<PixRGB<byte> >& img, Image<float> salMap); 00099 00100 nub::ref<VisualCortexConfigurator> itsVcc; // The visual cortex component 00101 00102 Image<float> itsPrevSmap; // The previous saliency map - used by Bruce's MSDiff algorithm 00103 00104 OModelParam<float> itsRandGain; // The final score is computed as a sum of products of the 00105 OModelParam<float> itsEntropyGain; // individual metrics and these coefficients 00106 OModelParam<float> itsSaliencyGain; 00107 OModelParam<float> itsUniquenessGain; 00108 OModelParam<float> itsMSDSurpriseGain; 00109 OModelParam<float> itsKLSurpriseGain; 00110 }; 00111 00112 #endif 00113 00114