00001 /*!@file TestSuite/whitebox-Learn.C Whitebox tests for neural networks and other learners. */ 00002 00003 // //////////////////////////////////////////////////////////////////// // 00004 // The iLab Neuromorphic Vision C++ Toolkit - Copyright (C) 2000-2005 // 00005 // by the University of Southern California (USC) and the iLab at USC. // 00006 // See http://iLab.usc.edu for information about this project. // 00007 // //////////////////////////////////////////////////////////////////// // 00008 // Major portions of the iLab Neuromorphic Vision Toolkit are protected // 00009 // under the U.S. patent ``Computation of Intrinsic Perceptual Saliency // 00010 // in Visual Environments, and Applications'' by Christof Koch and // 00011 // Laurent Itti, California Institute of Technology, 2001 (patent // 00012 // pending; application number 09/912,225 filed July 23, 2001; see // 00013 // http://pair.uspto.gov/cgi-bin/final/home.pl for current status). // 00014 // //////////////////////////////////////////////////////////////////// // 00015 // This file is part of the iLab Neuromorphic Vision C++ Toolkit. // 00016 // // 00017 // The iLab Neuromorphic Vision C++ Toolkit is free software; you can // 00018 // redistribute it and/or modify it under the terms of the GNU General // 00019 // Public License as published by the Free Software Foundation; either // 00020 // version 2 of the License, or (at your option) any later version. // 00021 // // 00022 // The iLab Neuromorphic Vision C++ Toolkit is distributed in the hope // 00023 // that it will be useful, but WITHOUT ANY WARRANTY; without even the // 00024 // implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR // 00025 // PURPOSE. See the GNU General Public License for more details. // 00026 // // 00027 // You should have received a copy of the GNU General Public License // 00028 // along with the iLab Neuromorphic Vision C++ Toolkit; if not, write // 00029 // to the Free Software Foundation, Inc., 59 Temple Place, Suite 330, // 00030 // Boston, MA 02111-1307 USA. // 00031 // //////////////////////////////////////////////////////////////////// // 00032 // 00033 // Primary maintainer for this file: Rob Peters <rjpeters at usc dot edu> 00034 // $HeadURL: svn://isvn.usc.edu/software/invt/trunk/saliency/src/TestSuite/whitebox-Learn.C $ 00035 // $Id: whitebox-Learn.C 10002 2008-07-29 17:18:48Z icore $ 00036 // 00037 00038 #ifndef TESTSUITE_WHITEBOX_LEARN_C_DEFINED 00039 #define TESTSUITE_WHITEBOX_LEARN_C_DEFINED 00040 00041 #include "Learn/BackpropNetwork.H" 00042 #include "TestSuite/TestSuite.H" 00043 00044 static void Learn_xx_backprop_nnet_xx_xor_xx_1(TestSuite& suite) 00045 { 00046 // inputs for the xor problem (one data sample per column) 00047 const float X_[] = 00048 { 00049 0.5, 0.5, -0.5, -0.5, 00050 0.5, -0.5, -0.5, 0.5, 00051 }; 00052 00053 // outputs for the xor problem (one set of outputs per row) 00054 const float D_[] = 00055 { 00056 1, 0, 1, 0, 00057 0.2, 0.8, 0.2, 0.8 00058 }; 00059 00060 const Image<float> X(&X_[0], 4, 2); 00061 const Image<float> D(&D_[0], 4, 2); 00062 00063 int nsuccess = 0; 00064 const int ntotal = 20; 00065 00066 const float eta = 0.5f; 00067 const float alph = 0.5f; 00068 const int iters = 1000; 00069 00070 // we have to do this as a loop and check that we succeed most of 00071 // the time; unfortunately backprop occasionally gets stuck in a 00072 // local minimum so we can't guarantee that the network will find 00073 // the optimal solution 100% of the time 00074 00075 for (int i = 0; i < ntotal; ++i) 00076 { 00077 BackpropNetwork n; 00078 00079 double E, C; 00080 00081 n.train(X, D, 2, eta, alph, iters, &E, &C); 00082 00083 if (E < 0.1 && C > 0.9) 00084 ++nsuccess; 00085 } 00086 00087 REQUIRE_GTE(nsuccess, int(0.25*ntotal)); 00088 } 00089 00090 /////////////////////////////////////////////////////////////////////// 00091 // 00092 // main 00093 // 00094 /////////////////////////////////////////////////////////////////////// 00095 00096 int main(int argc, const char** argv) 00097 { 00098 TestSuite suite; 00099 00100 suite.ADD_TEST(Learn_xx_backprop_nnet_xx_xor_xx_1); 00101 00102 suite.parseAndRun(argc, argv); 00103 00104 return 0; 00105 } 00106 00107 // ###################################################################### 00108 /* So things look consistent in everyone's emacs... */ 00109 /* Local Variables: */ 00110 /* indent-tabs-mode: nil */ 00111 /* End: */ 00112 00113 #endif // TESTSUITE_WHITEBOX_LEARN_C_DEFINED