whitebox-Learn.C

Go to the documentation of this file.
00001 /*!@file TestSuite/whitebox-Learn.C Whitebox tests for neural networks and other learners. */
00002 
00003 // //////////////////////////////////////////////////////////////////// //
00004 // The iLab Neuromorphic Vision C++ Toolkit - Copyright (C) 2000-2005   //
00005 // by the University of Southern California (USC) and the iLab at USC.  //
00006 // See http://iLab.usc.edu for information about this project.          //
00007 // //////////////////////////////////////////////////////////////////// //
00008 // Major portions of the iLab Neuromorphic Vision Toolkit are protected //
00009 // under the U.S. patent ``Computation of Intrinsic Perceptual Saliency //
00010 // in Visual Environments, and Applications'' by Christof Koch and      //
00011 // Laurent Itti, California Institute of Technology, 2001 (patent       //
00012 // pending; application number 09/912,225 filed July 23, 2001; see      //
00013 // http://pair.uspto.gov/cgi-bin/final/home.pl for current status).     //
00014 // //////////////////////////////////////////////////////////////////// //
00015 // This file is part of the iLab Neuromorphic Vision C++ Toolkit.       //
00016 //                                                                      //
00017 // The iLab Neuromorphic Vision C++ Toolkit is free software; you can   //
00018 // redistribute it and/or modify it under the terms of the GNU General  //
00019 // Public License as published by the Free Software Foundation; either  //
00020 // version 2 of the License, or (at your option) any later version.     //
00021 //                                                                      //
00022 // The iLab Neuromorphic Vision C++ Toolkit is distributed in the hope  //
00023 // that it will be useful, but WITHOUT ANY WARRANTY; without even the   //
00024 // implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR      //
00025 // PURPOSE.  See the GNU General Public License for more details.       //
00026 //                                                                      //
00027 // You should have received a copy of the GNU General Public License    //
00028 // along with the iLab Neuromorphic Vision C++ Toolkit; if not, write   //
00029 // to the Free Software Foundation, Inc., 59 Temple Place, Suite 330,   //
00030 // Boston, MA 02111-1307 USA.                                           //
00031 // //////////////////////////////////////////////////////////////////// //
00032 //
00033 // Primary maintainer for this file: Rob Peters <rjpeters at usc dot edu>
00034 // $HeadURL: svn://isvn.usc.edu/software/invt/trunk/saliency/src/TestSuite/whitebox-Learn.C $
00035 // $Id: whitebox-Learn.C 10002 2008-07-29 17:18:48Z icore $
00036 //
00037 
00038 #ifndef TESTSUITE_WHITEBOX_LEARN_C_DEFINED
00039 #define TESTSUITE_WHITEBOX_LEARN_C_DEFINED
00040 
00041 #include "Learn/BackpropNetwork.H"
00042 #include "TestSuite/TestSuite.H"
00043 
00044 static void Learn_xx_backprop_nnet_xx_xor_xx_1(TestSuite& suite)
00045 {
00046   // inputs for the xor problem (one data sample per column)
00047   const float X_[] =
00048     {
00049       0.5,  0.5, -0.5, -0.5,
00050       0.5, -0.5, -0.5,  0.5,
00051     };
00052 
00053   // outputs for the xor problem (one set of outputs per row)
00054   const float D_[] =
00055     {
00056       1, 0, 1, 0,
00057       0.2, 0.8, 0.2, 0.8
00058     };
00059 
00060   const Image<float> X(&X_[0], 4, 2);
00061   const Image<float> D(&D_[0], 4, 2);
00062 
00063   int nsuccess = 0;
00064   const int ntotal = 20;
00065 
00066   const float eta = 0.5f;
00067   const float alph = 0.5f;
00068   const int iters = 1000;
00069 
00070   // we have to do this as a loop and check that we succeed most of
00071   // the time; unfortunately backprop occasionally gets stuck in a
00072   // local minimum so we can't guarantee that the network will find
00073   // the optimal solution 100% of the time
00074 
00075   for (int i = 0; i < ntotal; ++i)
00076     {
00077       BackpropNetwork n;
00078 
00079       double E, C;
00080 
00081       n.train(X, D, 2, eta, alph, iters, &E, &C);
00082 
00083       if (E < 0.1 && C > 0.9)
00084         ++nsuccess;
00085     }
00086 
00087   REQUIRE_GTE(nsuccess, int(0.25*ntotal));
00088 }
00089 
00090 ///////////////////////////////////////////////////////////////////////
00091 //
00092 // main
00093 //
00094 ///////////////////////////////////////////////////////////////////////
00095 
00096 int main(int argc, const char** argv)
00097 {
00098   TestSuite suite;
00099 
00100   suite.ADD_TEST(Learn_xx_backprop_nnet_xx_xor_xx_1);
00101 
00102   suite.parseAndRun(argc, argv);
00103 
00104   return 0;
00105 }
00106 
00107 // ######################################################################
00108 /* So things look consistent in everyone's emacs... */
00109 /* Local Variables: */
00110 /* indent-tabs-mode: nil */
00111 /* End: */
00112 
00113 #endif // TESTSUITE_WHITEBOX_LEARN_C_DEFINED
Generated on Sun May 8 08:42:23 2011 for iLab Neuromorphic Vision Toolkit by  doxygen 1.6.3