SurpriseModelSPC Class Reference

A single-Poisson/Gamma SurpriseModel. More...

#include <Surprise/SurpriseModel.H>

Inheritance diagram for SurpriseModelSPC:
Inheritance graph
[legend]
Collaboration diagram for SurpriseModelSPC:
Collaboration graph
[legend]

List of all members.

Public Member Functions

 SurpriseModelSPC (const double updatefac=0.5, const double sampleval=0.0, const double samplevar=1.0)
 Constructor. See base class for details.
virtual ~SurpriseModelSPC ()
 Virtual destructor ensures proper destruction of derived classes.
virtual void reset ()
 Reset to initial state.
virtual void init (const double updatefac=0.5, const double sampleval=0.0, const double samplevar=1.0)
 Change intial state parameters.
virtual void load (const double sampleval, const double samplevar=1.0)
 Load given sample mean and variance.
virtual double surprise (const SurpriseModelSPC &other)
 Compute surprise between us and another model.
virtual void preComputeHyperParams (const SurpriseModelSPC &sample)
 Is empty in this model.
virtual void combineFrom (const Image< SurpriseModelSPC > &models, const Image< float > &weights)
 Initialize us as a weighted combination of the given map of models.
virtual void combineFrom (const Image< SurpriseModelSPC > &models, const Image< float > &weights, const Point2D< int > &pos, const int width, const int height, const int offset)
 Initialize us as a weighted combination of the given map of models.
virtual double getMean () const
 get our mean
virtual double getVar () const
 get our variance
virtual double getUpdateFac () const
 get our UpdateFac
double getAlpha () const
 get our alpha
double getBeta () const
 get out beta
void preSetAlpha ()
 Pre set model alpha values.

Protected Attributes

int itsN
 our sample N
double itsAlpha
 our current Gamma alpha
double itsBeta

Detailed Description

A single-Poisson/Gamma SurpriseModel.

This is a very simple SurpriseModel consisting of a single Gamma prior over Poisson, which is updated in a sliding-average manner.

This variant fixes the beta term which is useful for multi frame inputs

Definition at line 353 of file SurpriseModel.H.


Constructor & Destructor Documentation

SurpriseModelSPC::SurpriseModelSPC ( const double  updatefac = 0.5,
const double  sampleval = 0.0,
const double  samplevar = 1.0 
)

Constructor. See base class for details.

Definition at line 566 of file SurpriseModel.C.

SurpriseModelSPC::~SurpriseModelSPC (  )  [virtual]

Virtual destructor ensures proper destruction of derived classes.

Definition at line 576 of file SurpriseModel.C.


Member Function Documentation

void SurpriseModelSPC::combineFrom ( const Image< SurpriseModelSPC > &  models,
const Image< float > &  weights,
const Point2D< int > &  pos,
const int  width,
const int  height,
const int  offset 
) [inline, virtual]

Initialize us as a weighted combination of the given map of models.

Definition at line 655 of file SurpriseModel.C.

void SurpriseModelSPC::combineFrom ( const Image< SurpriseModelSPC > &  models,
const Image< float > &  weights 
) [inline, virtual]

Initialize us as a weighted combination of the given map of models.

Definition at line 645 of file SurpriseModel.C.

double SurpriseModelSPC::getAlpha (  )  const [inline]

get our alpha

Definition at line 688 of file SurpriseModel.C.

References itsAlpha.

double SurpriseModelSPC::getBeta (  )  const [inline]

get out beta

Definition at line 692 of file SurpriseModel.C.

double SurpriseModelSPC::getMean (  )  const [inline, virtual]

get our mean

Implements SurpriseModel.

Definition at line 676 of file SurpriseModel.C.

References itsAlpha.

double SurpriseModelSPC::getUpdateFac (  )  const [inline, virtual]

get our UpdateFac

Implements SurpriseModel.

Definition at line 684 of file SurpriseModel.C.

References SurpriseModel::itsUpdateFac.

double SurpriseModelSPC::getVar (  )  const [inline, virtual]

get our variance

Implements SurpriseModel.

Definition at line 680 of file SurpriseModel.C.

References itsAlpha.

void SurpriseModelSPC::init ( const double  updatefac = 0.5,
const double  sampleval = 0.0,
const double  samplevar = 1.0 
) [inline, virtual]

Change intial state parameters.

Reimplemented from SurpriseModel.

Definition at line 584 of file SurpriseModel.C.

References load().

void SurpriseModelSPC::load ( const double  sampleval,
const double  samplevar = 1.0 
) [inline, virtual]

Load given sample mean and variance.

Implements SurpriseModel.

Definition at line 593 of file SurpriseModel.C.

References itsAlpha, itsN, and SurpriseModel::itsUpdateFac.

Referenced by init(), and reset().

void SurpriseModelSPC::preComputeHyperParams ( const SurpriseModelSPC sample  )  [inline, virtual]

Is empty in this model.

Definition at line 627 of file SurpriseModel.C.

void SurpriseModelSPC::preSetAlpha (  ) 

Pre set model alpha values.

Definition at line 696 of file SurpriseModel.C.

References itsAlpha.

void SurpriseModelSPC::reset ( void   )  [inline, virtual]

Reset to initial state.

Implements SurpriseModel.

Definition at line 580 of file SurpriseModel.C.

References SurpriseModel::itsInitialVal, SurpriseModel::itsInitialVar, and load().

double SurpriseModelSPC::surprise ( const SurpriseModelSPC other  )  [inline, virtual]

Compute surprise between us and another model.

Definition at line 601 of file SurpriseModel.C.

References D_LOG_SQRT_2, D_SQRT_2, itsAlpha, itsN, and SurpriseModel::itsUpdateFac.


Member Data Documentation

double SurpriseModelSPC::itsAlpha [protected]

our current Gamma alpha

Definition at line 409 of file SurpriseModel.H.

Referenced by getAlpha(), getMean(), getVar(), load(), preSetAlpha(), and surprise().

int SurpriseModelSPC::itsN [protected]

our sample N

Definition at line 408 of file SurpriseModel.H.

Referenced by load(), and surprise().


The documentation for this class was generated from the following files:
Generated on Sun May 8 08:43:50 2011 for iLab Neuromorphic Vision Toolkit by  doxygen 1.6.3