SurpriseModelSPF Class Reference

A single-Poisson/Gamma SurpriseModel. More...

#include <Surprise/SurpriseModel.H>

Inheritance diagram for SurpriseModelSPF:
Inheritance graph
[legend]
Collaboration diagram for SurpriseModelSPF:
Collaboration graph
[legend]

List of all members.

Public Member Functions

 SurpriseModelSPF (const double updatefac=0.5, const double sampleval=0.0, const double samplevar=1.0)
 Constructor. See base class for details.
virtual ~SurpriseModelSPF ()
 Virtual destructor ensures proper destruction of derived classes.
virtual void reset ()
 Reset to initial state.
virtual void init (const double updatefac=0.5, const double sampleval=0.0, const double samplevar=1.0)
 Change intial state parameters.
virtual void load (const double sampleval, const double samplevar=1.0)
 Load given sample mean and variance.
virtual double surprise (const SurpriseModelSPF &other)
 Compute surprise between us and another model.
virtual void preComputeHyperParams (const SurpriseModelSPF &sample)
 Is empty in this model.
virtual void combineFrom (const Image< SurpriseModelSPF > &models, const Image< float > &weights)
 Initialize us as a weighted combination of the given map of models.
virtual void combineFrom (const Image< SurpriseModelSPF > &models, const Image< float > &weights, const Point2D< int > &pos, const int width, const int height, const int offset)
 Initialize us as a weighted combination of the given map of models.
virtual double getMean () const
 get our mean
virtual double getVar () const
 get our variance
virtual double getUpdateFac () const
 get our UpdateFac
double getAlpha () const
 get our alpha
double getBeta () const
 get out beta
void preSetAlpha ()
 Pre set model alpha values.

Protected Attributes

int itsN
 our sample N
double itsAlpha
 our current Gamma alpha
double itsBeta
double itsLastS
double itsSFac

Detailed Description

A single-Poisson/Gamma SurpriseModel.

This is a very simple SurpriseModel consisting of a single Gamma prior over Poisson, which is updated in a sliding-average manner.

This variant floats the beta term which may be useful for multi frame inputs

<<Experimental>>

Definition at line 423 of file SurpriseModel.H.


Constructor & Destructor Documentation

SurpriseModelSPF::SurpriseModelSPF ( const double  updatefac = 0.5,
const double  sampleval = 0.0,
const double  samplevar = 1.0 
)

Constructor. See base class for details.

Definition at line 706 of file SurpriseModel.C.

SurpriseModelSPF::~SurpriseModelSPF (  )  [virtual]

Virtual destructor ensures proper destruction of derived classes.

Definition at line 716 of file SurpriseModel.C.


Member Function Documentation

void SurpriseModelSPF::combineFrom ( const Image< SurpriseModelSPF > &  models,
const Image< float > &  weights,
const Point2D< int > &  pos,
const int  width,
const int  height,
const int  offset 
) [inline, virtual]

Initialize us as a weighted combination of the given map of models.

Definition at line 793 of file SurpriseModel.C.

void SurpriseModelSPF::combineFrom ( const Image< SurpriseModelSPF > &  models,
const Image< float > &  weights 
) [inline, virtual]

Initialize us as a weighted combination of the given map of models.

Definition at line 783 of file SurpriseModel.C.

double SurpriseModelSPF::getAlpha (  )  const [inline]

get our alpha

Definition at line 826 of file SurpriseModel.C.

References itsAlpha.

double SurpriseModelSPF::getBeta (  )  const [inline]

get out beta

Definition at line 830 of file SurpriseModel.C.

double SurpriseModelSPF::getMean (  )  const [inline, virtual]

get our mean

Implements SurpriseModel.

Definition at line 814 of file SurpriseModel.C.

References itsAlpha.

double SurpriseModelSPF::getUpdateFac (  )  const [inline, virtual]

get our UpdateFac

Implements SurpriseModel.

Definition at line 822 of file SurpriseModel.C.

References SurpriseModel::itsUpdateFac.

double SurpriseModelSPF::getVar (  )  const [inline, virtual]

get our variance

Implements SurpriseModel.

Definition at line 818 of file SurpriseModel.C.

References itsAlpha.

void SurpriseModelSPF::init ( const double  updatefac = 0.5,
const double  sampleval = 0.0,
const double  samplevar = 1.0 
) [inline, virtual]

Change intial state parameters.

Reimplemented from SurpriseModel.

Definition at line 724 of file SurpriseModel.C.

References load().

void SurpriseModelSPF::load ( const double  sampleval,
const double  samplevar = 1.0 
) [inline, virtual]

Load given sample mean and variance.

Implements SurpriseModel.

Definition at line 733 of file SurpriseModel.C.

References itsAlpha, itsN, and SurpriseModel::itsUpdateFac.

Referenced by init(), and reset().

void SurpriseModelSPF::preComputeHyperParams ( const SurpriseModelSPF sample  )  [inline, virtual]

Is empty in this model.

Definition at line 765 of file SurpriseModel.C.

void SurpriseModelSPF::preSetAlpha (  ) 

Pre set model alpha values.

Definition at line 834 of file SurpriseModel.C.

References itsAlpha.

void SurpriseModelSPF::reset ( void   )  [inline, virtual]

Reset to initial state.

Implements SurpriseModel.

Definition at line 720 of file SurpriseModel.C.

References SurpriseModel::itsInitialVal, SurpriseModel::itsInitialVar, and load().

double SurpriseModelSPF::surprise ( const SurpriseModelSPF other  )  [inline, virtual]

Compute surprise between us and another model.

Definition at line 741 of file SurpriseModel.C.

References itsAlpha, itsN, and SurpriseModel::itsUpdateFac.


Member Data Documentation

double SurpriseModelSPF::itsAlpha [protected]

our current Gamma alpha

Definition at line 479 of file SurpriseModel.H.

Referenced by getAlpha(), getMean(), getVar(), load(), preSetAlpha(), and surprise().

int SurpriseModelSPF::itsN [protected]

our sample N

Definition at line 478 of file SurpriseModel.H.

Referenced by load(), and surprise().


The documentation for this class was generated from the following files:
Generated on Sun May 8 08:43:50 2011 for iLab Neuromorphic Vision Toolkit by  doxygen 1.6.3