00001 /*!@file Learn/RecurBayes.H RecurBayesian network classifier */ 00002 00003 // //////////////////////////////////////////////////////////////////// // 00004 // The iLab Neuromorphic Vision C++ Toolkit - Copyright (C) 2000-2005 // 00005 // by the University of Southern California (USC) and the iLab at USC. // 00006 // See http://iLab.usc.edu for information about this project. // 00007 // //////////////////////////////////////////////////////////////////// // 00008 // Major portions of the iLab Neuromorphic Vision Toolkit are protected // 00009 // under the U.S. patent ``Computation of Intrinsic Perceptual Saliency // 00010 // in Visual Environments, and Applications'' by Christof Koch and // 00011 // Laurent Itti, California Institute of Technology, 2001 (patent // 00012 // pending; application number 09/912,225 filed July 23, 2001; see // 00013 // http://pair.uspto.gov/cgi-bin/final/home.pl for current status). // 00014 // //////////////////////////////////////////////////////////////////// // 00015 // This file is part of the iLab Neuromorphic Vision C++ Toolkit. // 00016 // // 00017 // The iLab Neuromorphic Vision C++ Toolkit is free software; you can // 00018 // redistribute it and/or modify it under the terms of the GNU General // 00019 // Public License as published by the Free Software Foundation; either // 00020 // version 2 of the License, or (at your option) any later version. // 00021 // // 00022 // The iLab Neuromorphic Vision C++ Toolkit is distributed in the hope // 00023 // that it will be useful, but WITHOUT ANY WARRANTY; without even the // 00024 // implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR // 00025 // PURPOSE. See the GNU General Public License for more details. // 00026 // // 00027 // You should have received a copy of the GNU General Public License // 00028 // along with the iLab Neuromorphic Vision C++ Toolkit; if not, write // 00029 // to the Free Software Foundation, Inc., 59 Temple Place, Suite 330, // 00030 // Boston, MA 02111-1307 USA. // 00031 // //////////////////////////////////////////////////////////////////// // 00032 // 00033 // Primary maintainer for this file: Lior Elazary <elazary@usc.edu> 00034 // $HeadURL: svn://isvn.usc.edu/software/invt/trunk/saliency/src/Learn/RecurBayes.H $ 00035 // $Id: RecurBayes.H 9108 2007-12-30 06:14:30Z rjpeters $ 00036 // 00037 00038 //This is a Naive RecurBayes for now 00039 #ifndef LEARN_BAYES_H_DEFINED 00040 #define LEARN_BAYES_H_DEFINED 00041 00042 #include "Util/Types.H" // for uint 00043 #include <vector> 00044 #include <string> 00045 00046 class RecurBayes 00047 { 00048 public: 00049 00050 struct ClassInfo 00051 { 00052 ClassInfo(int id, double p, double sig) : classID(id), prob(p), statSig(sig) {} //constructor to set values 00053 int classID; //the class ID; 00054 double prob; //the probability of this class 00055 double statSig; //the statistical significance between the features value and the params 00056 }; 00057 00058 //! Construct a bayes classifer with a given number of features and 00059 //! number of classes 00060 RecurBayes(uint numClasses, uint numFeatures, uint nfix); 00061 00062 //! Destructor 00063 ~RecurBayes(); 00064 00065 //! Learn to associate a feature vector with a particuler class name 00066 void learn(std::vector<double> &fv, const char *name, uint fix); //TODO make as a Template 00067 00068 //! classify a given feature vector 00069 int classify(std::vector<double> &fv, double *prob = NULL, uint fix = 1); //TODO make as a template 00070 00071 //! Get the mean for a particuler feature 00072 double getMean(uint cls, uint i, uint fix); 00073 00074 //! Get the stdev Squared for a particuler feature 00075 double getStdevSq(uint cls, uint i, uint fix); 00076 00077 //! Get the number of features 00078 uint getNumFeatures(); 00079 00080 //! Get the number of classes 00081 uint getNumClasses(); 00082 00083 //! Get the Freq of a given class 00084 uint getClassFreq(uint cls); 00085 00086 //! Get the probability of a given class 00087 double getClassProb(uint cls); 00088 00089 //! return the statistical significent of the FV for a given class 00090 double getStatSig(std::vector<double> &fv, uint cls, uint fix); 00091 00092 //! Calculate a Normal Dist (use the srdev squared 00093 double gauss(double x, double mean, double stdevSq); 00094 00095 //! Save the network to a file 00096 void save(const char *filename); 00097 00098 //! Load the network from a file 00099 void load(const char *filename); 00100 00101 //! set feature name (for debuging) 00102 void setFeatureName(uint index, const char *name); 00103 00104 //! get feature name (for debuging) 00105 const char* getFeatureName(const uint index) const; 00106 00107 //! Add class by name and return its Id 00108 int addClass(const char *name); 00109 00110 //! Get the class name from a given Id 00111 const char* getClassName(const uint id); 00112 00113 //! Get the class id from a given name 00114 int getClassId(const char *name); 00115 00116 private: 00117 00118 uint itsNumFeatures; //the number of features we have 00119 uint itsNumClasses; //the Number of classes we have 00120 uint itsNumFix; 00121 std::vector<std::vector<std::vector<double> > > itsMean; //the mean for each feature per class per fixation 00122 //the stdev squared for each feature 00123 std::vector<std::vector<std::vector<double> > > itsVar; //the variance for each feature per class per fixation 00124 //TODO: its long int sufficent? is there a better way of calc the mean and stdev? 00125 std::vector<uint64> itsClassFreq; //the Freq of a given class 00126 00127 std::vector<std::string> itsFeatureNames; //THe name of the features 00128 std::vector<std::string> itsClassNames; //The names of the clases 00129 00130 }; 00131 00132 // ###################################################################### 00133 /* So things look consistent in everyone's emacs... */ 00134 /* Local Variables: */ 00135 /* indent-tabs-mode: nil */ 00136 /* End: */ 00137 00138 #endif // LEARN_BAYES_H_DEFINED