HMMLib.h

00001 #ifndef HMMLIB_H
00002 #define HMMLIB_H
00003 
00004 #include <vector>
00005 #include <string>
00006 #include "Learn/WiimoteGR/TimeSlot.h"
00007 
00008 using namespace std;
00009 
00010 namespace WiimoteGR{
00011     /*
00012         Hidden Markov Model, represents a gesture
00013     */
00014     struct HMM{
00015         string gestureName;
00016         //quantizer used to generate training sequence, corresponding to M,B
00017         string quantizerName;
00018         //represents the style of model(N,pi,A),
00019         //  ex: "3 state circular", "3 state full connection", "5 state left to right", etc...
00020         string modelStyle;
00021 
00022         bool trained;
00023         size_t N;  // number of states
00024         size_t M;  // number of observable symbols
00025         vector<double> A;  // size = N*N, A[i*N+j] is the transition prob of going from state i at time t to state j at time t+1
00026         vector<double> B;  // size = N*M, B[i*M+k] is the probability of observable symbol k in state i
00027         vector<double> pi; // size = N,   pi[i] is the initial state distribution.
00028 
00029         //constructor for Database::LoadHMM()
00030         HMM(const Quantizer& quantizer, const char* modelStyle, bool trained)
00031             :quantizerName(quantizer.name), modelStyle(modelStyle), trained(trained), M(quantizer.M)
00032         { /* nothing */ }
00033 
00034         HMM(const char* gestureName, const Quantizer& quantizer, const char* modelStyle, bool trained, size_t N,
00035             double *const A_in, double *const B_in, double *const pi_in);
00036         
00037         //for const HMM object
00038         const double& TranProb(size_t i, size_t j) const{
00039             return A[i*N+j];
00040         }
00041         const double& ObsProb(size_t j, size_t k) const{
00042             return B[j*M+k];
00043         }
00044 
00045         //for nonconst HMM object
00046         double& TranProb(size_t i, size_t j){
00047             return A[i*N+j];
00048         }
00049         double& ObsProb(size_t j, size_t k){
00050             return B[j*M+k];
00051         }
00052     };
00053     
00054     struct TimeSlot;
00055 
00056     class HMMLib{
00057     public:
00058         void ShowHMM(HMM& hmm);
00059         const HMM& Recognize(const vector<HMM>& HMMVec, TimeSlot& seq);
00060         double SeqLogProb(const HMM& hmm, TimeSlot& seq, bool restart);
00061         int EstimateModel(HMM& hmm, TimeSlot& seq, size_t maxIteration = 10);
00062         int EstimateModelBySeqs(HMM& hmm, vector<TimeSlot>& seqs, size_t maxIteration = 10);
00063     private:
00064         bool CheckAndAllocateMemory(const HMM &hmm, vector<TimeSlot>& seqs);
00065         void Forward(const HMM& hmm, TimeSlot& seq, bool restart);
00066         void Backward(const HMM& hmm, TimeSlot& seq);
00067         void ComputeGamma(const HMM& hmm, TimeSlot& seq);
00068         void ComputeXi(const HMM& hmm, TimeSlot& seq);
00069     };
00070 }
00071 #endif
Generated on Sun May 8 08:40:59 2011 for iLab Neuromorphic Vision Toolkit by  doxygen 1.6.3