00001
00002
00003
00004
00005
00006
00007
00008
00009
00010
00011
00012
00013
00014
00015
00016
00017
00018
00019
00020
00021
00022
00023
00024
00025
00026
00027
00028
00029
00030
00031
00032
00033
00034
00035
00036
00037
00038
00039 #include "Component/ModelManager.H"
00040 #include "Image/Image.H"
00041 #include "Learn/Bayes.H"
00042
00043 int main()
00044 {
00045
00046 Bayes bn(4, 2);
00047
00048
00049 std::vector<double> FV(4);
00050
00051
00052 FV[0] = 752; FV[1] = 265; FV[2] = 700; FV[3] = 271; bn.learn(FV, 0u);
00053 FV[0] = 895; FV[1] = 355; FV[2] = 812; FV[3] = 288; bn.learn(FV, 0u);
00054 FV[0] = 893; FV[1] = 352; FV[2] = 790; FV[3] = 298; bn.learn(FV, 0u);
00055 FV[0] = 814; FV[1] = 326; FV[2] = 790; FV[3] = 296; bn.learn(FV, 0u);
00056 FV[0] = 532; FV[1] = 405; FV[2] = 750; FV[3] = 401; bn.learn(FV, 0u);
00057 FV[0] = 532; FV[1] = 405; FV[2] = 750; FV[3] = 401; bn.learn(FV, 0u);
00058 FV[0] = 478; FV[1] = 385; FV[2] = 750; FV[3] = 394; bn.learn(FV, 0u);
00059 FV[0] = 532; FV[1] = 405; FV[2] = 750; FV[3] = 401; bn.learn(FV, 0u);
00060 FV[0] = 565; FV[1] = 47 ; FV[2] = 710; FV[3] = 142; bn.learn(FV, 0u);
00061 FV[0] = 689; FV[1] = 127; FV[2] = 955; FV[3] = 162; bn.learn(FV, 0u);
00062
00063
00064 FV[0] = 576; FV[1] = 726; FV[2] = 287; FV[3] =719; bn.learn(FV, 1);
00065 FV[0] = 718; FV[1] = 783; FV[2] = 300; FV[3] =536; bn.learn(FV, 1);
00066 FV[0] = 859; FV[1] = 724; FV[2] = 270; FV[3] =480; bn.learn(FV, 1);
00067 FV[0] = 839; FV[1] = 512; FV[2] = 246; FV[3] =657; bn.learn(FV, 1);
00068 FV[0] = 746; FV[1] = 343; FV[2] = 250; FV[3] =710; bn.learn(FV, 1);
00069 FV[0] = 660; FV[1] = 527; FV[2] = 272; FV[3] =763; bn.learn(FV, 1);
00070 FV[0] = 704; FV[1] = 621; FV[2] = 263; FV[3] =713; bn.learn(FV, 1);
00071 FV[0] = 684; FV[1] = 836; FV[2] = 287; FV[3] =213; bn.learn(FV, 1);
00072 FV[0] = 678; FV[1] = 800; FV[2] = 377; FV[3] =220; bn.learn(FV, 1);
00073 FV[0] = 624; FV[1] = 697; FV[2] = 494; FV[3] =238; bn.learn(FV, 1);
00074
00075
00076 LINFO("Class 0");
00077 for(uint i=0; i<bn.getNumFeatures(); i++)
00078 LINFO("Feature %i: mean %f, stddevSq %f", i, bn.getMean(0, i), bn.getStdevSq(0, i));
00079
00080 LINFO("Class 1");
00081 for(uint i=0; i<bn.getNumFeatures(); i++)
00082 LINFO("Feature %i: mean %f, stddevSq %f", i, bn.getMean(1, i), bn.getStdevSq(1, i));
00083
00084 LINFO("Class 0 frq %i prob %f", bn.getClassFreq(0), bn.getClassProb(0));
00085 LINFO("Class 1 frq %i prob %f", bn.getClassFreq(1), bn.getClassProb(1));
00086
00087
00088
00089 FV[0] = 750; FV[1] = 269; FV[2] = 720; FV[3] = 291;
00090 int cls = bn.classify(FV);
00091 LINFO("FV1 belongs to class %i", cls);
00092
00093 FV[0] = 458; FV[1] = 381; FV[2] = 350; FV[3] = 392;
00094 cls = bn.classify(FV);
00095 LINFO("FV2 belongs to class %i", cls);
00096
00097
00098 bn.save("Bayes.net");
00099
00100 bn.load("Bayes.net");
00101
00102 LINFO("Class 0");
00103 for(uint i=0; i<bn.getNumFeatures(); i++)
00104 LINFO("Feature %i: mean %f, stddevSq %f", i, bn.getMean(0, i), bn.getStdevSq(0, i));
00105
00106 LINFO("Class 1");
00107 for(uint i=0; i<bn.getNumFeatures(); i++)
00108 LINFO("Feature %i: mean %f, stddevSq %f", i, bn.getMean(1, i), bn.getStdevSq(1, i));
00109
00110 LINFO("Class 0 frq %i prob %f", bn.getClassFreq(0), bn.getClassProb(0));
00111 LINFO("Class 1 frq %i prob %f", bn.getClassFreq(1), bn.getClassProb(1));
00112
00113
00114
00115 FV[0] = 750; FV[1] = 269; FV[2] = 720; FV[3] = 291;
00116 cls = bn.classify(FV);
00117 LINFO("FV1 belongs to class %i", cls);
00118
00119 FV[0] = 458; FV[1] = 381; FV[2] = 350; FV[3] = 392;
00120 cls = bn.classify(FV);
00121 LINFO("FV2 belongs to class %i", cls);
00122 }
00123
00124
00125
00126
00127
00128
00129