test-Bayes.C

Go to the documentation of this file.
00001 /*!@file Learn/test-Bayes.C test the Bayes network class
00002 */
00003 
00004 // //////////////////////////////////////////////////////////////////// //
00005 // The iLab Neuromorphic Vision C++ Toolkit - Copyright (C) 2001 by the //
00006 // University of Southern California (USC) and the iLab at USC.         //
00007 // See http://iLab.usc.edu for information about this project.          //
00008 // //////////////////////////////////////////////////////////////////// //
00009 // Major portions of the iLab Neuromorphic Vision Toolkit are protected //
00010 // under the U.S. patent ``Computation of Intrinsic Perceptual Saliency //
00011 // in Visual Environments, and Applications'' by Christof Koch and      //
00012 // Laurent Itti, California Institute of Technology, 2001 (patent       //
00013 // pending; application number 09/912,225 filed July 23, 2001; see      //
00014 // http://pair.uspto.gov/cgi-bin/final/home.pl for current status).     //
00015 // //////////////////////////////////////////////////////////////////// //
00016 // This file is part of the iLab Neuromorphic Vision C++ Toolkit.       //
00017 //                                                                      //
00018 // The iLab Neuromorphic Vision C++ Toolkit is free software; you can   //
00019 // redistribute it and/or modify it under the terms of the GNU General  //
00020 // Public License as published by the Free Software Foundation; either  //
00021 // version 2 of the License, or (at your option) any later version.     //
00022 //                                                                      //
00023 // The iLab Neuromorphic Vision C++ Toolkit is distributed in the hope  //
00024 // that it will be useful, but WITHOUT ANY WARRANTY; without even the   //
00025 // implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR      //
00026 // PURPOSE.  See the GNU General Public License for more details.       //
00027 //                                                                      //
00028 // You should have received a copy of the GNU General Public License    //
00029 // along with the iLab Neuromorphic Vision C++ Toolkit; if not, write   //
00030 // to the Free Software Foundation, Inc., 59 Temple Place, Suite 330,   //
00031 // Boston, MA 02111-1307 USA.                                           //
00032 // //////////////////////////////////////////////////////////////////// //
00033 //
00034 // Primary maintainer for this file: Lior Elazary <elazary@usc.edu>
00035 // $HeadURL: svn://isvn.usc.edu/software/invt/trunk/saliency/src/Learn/test-Bayes.C $
00036 // $Id: test-Bayes.C 7040 2006-08-25 16:48:09Z rjpeters $
00037 //
00038 
00039 #include "Component/ModelManager.H"
00040 #include "Image/Image.H"
00041 #include "Learn/Bayes.H"
00042 
00043 int main()
00044 {
00045 
00046     Bayes bn(4, 2); //constract a bayes network with 4 featuers and 2 classes
00047 
00048 
00049     std::vector<double> FV(4);
00050 
00051     //Class 0
00052     FV[0] = 752; FV[1] = 265; FV[2] = 700; FV[3] = 271; bn.learn(FV, 0u);
00053     FV[0] = 895; FV[1] = 355; FV[2] = 812; FV[3] = 288; bn.learn(FV, 0u);
00054     FV[0] = 893; FV[1] = 352; FV[2] = 790; FV[3] = 298; bn.learn(FV, 0u);
00055     FV[0] = 814; FV[1] = 326; FV[2] = 790; FV[3] = 296; bn.learn(FV, 0u);
00056     FV[0] = 532; FV[1] = 405; FV[2] = 750; FV[3] = 401; bn.learn(FV, 0u);
00057     FV[0] = 532; FV[1] = 405; FV[2] = 750; FV[3] = 401; bn.learn(FV, 0u);
00058     FV[0] = 478; FV[1] = 385; FV[2] = 750; FV[3] = 394; bn.learn(FV, 0u);
00059     FV[0] = 532; FV[1] = 405; FV[2] = 750; FV[3] = 401; bn.learn(FV, 0u);
00060     FV[0] = 565; FV[1] = 47 ; FV[2] = 710; FV[3] = 142; bn.learn(FV, 0u);
00061     FV[0] = 689; FV[1] = 127; FV[2] = 955; FV[3] = 162; bn.learn(FV, 0u);
00062 
00063     //Class 1
00064     FV[0] = 576; FV[1] = 726; FV[2] = 287; FV[3] =719; bn.learn(FV, 1);
00065     FV[0] = 718; FV[1] = 783; FV[2] = 300; FV[3] =536; bn.learn(FV, 1);
00066     FV[0] = 859; FV[1] = 724; FV[2] = 270; FV[3] =480; bn.learn(FV, 1);
00067     FV[0] = 839; FV[1] = 512; FV[2] = 246; FV[3] =657; bn.learn(FV, 1);
00068     FV[0] = 746; FV[1] = 343; FV[2] = 250; FV[3] =710; bn.learn(FV, 1);
00069     FV[0] = 660; FV[1] = 527; FV[2] = 272; FV[3] =763; bn.learn(FV, 1);
00070     FV[0] = 704; FV[1] = 621; FV[2] = 263; FV[3] =713; bn.learn(FV, 1);
00071     FV[0] = 684; FV[1] = 836; FV[2] = 287; FV[3] =213; bn.learn(FV, 1);
00072     FV[0] = 678; FV[1] = 800; FV[2] = 377; FV[3] =220; bn.learn(FV, 1);
00073     FV[0] = 624; FV[1] = 697; FV[2] = 494; FV[3] =238; bn.learn(FV, 1);
00074 
00075 
00076     LINFO("Class 0");
00077     for(uint i=0; i<bn.getNumFeatures(); i++)
00078       LINFO("Feature %i: mean %f, stddevSq %f", i, bn.getMean(0, i), bn.getStdevSq(0, i));
00079 
00080     LINFO("Class 1");
00081     for(uint i=0; i<bn.getNumFeatures(); i++)
00082       LINFO("Feature %i: mean %f, stddevSq %f", i, bn.getMean(1, i), bn.getStdevSq(1, i));
00083 
00084     LINFO("Class 0 frq %i prob %f", bn.getClassFreq(0), bn.getClassProb(0));
00085     LINFO("Class 1 frq %i prob %f", bn.getClassFreq(1), bn.getClassProb(1));
00086 
00087 
00088     //New FV to classify
00089     FV[0] = 750; FV[1] = 269; FV[2] = 720; FV[3] = 291;
00090     int cls = bn.classify(FV); //classify a given FV
00091     LINFO("FV1 belongs to class %i", cls);
00092 
00093     FV[0] = 458; FV[1] = 381; FV[2] = 350; FV[3] = 392;
00094     cls = bn.classify(FV); //classify a given FV
00095     LINFO("FV2 belongs to class %i", cls);
00096 
00097 
00098     bn.save("Bayes.net");
00099 
00100     bn.load("Bayes.net");
00101 
00102     LINFO("Class 0");
00103     for(uint i=0; i<bn.getNumFeatures(); i++)
00104       LINFO("Feature %i: mean %f, stddevSq %f", i, bn.getMean(0, i), bn.getStdevSq(0, i));
00105 
00106     LINFO("Class 1");
00107     for(uint i=0; i<bn.getNumFeatures(); i++)
00108       LINFO("Feature %i: mean %f, stddevSq %f", i, bn.getMean(1, i), bn.getStdevSq(1, i));
00109 
00110     LINFO("Class 0 frq %i prob %f", bn.getClassFreq(0), bn.getClassProb(0));
00111     LINFO("Class 1 frq %i prob %f", bn.getClassFreq(1), bn.getClassProb(1));
00112 
00113 
00114     //New FV to classify
00115     FV[0] = 750; FV[1] = 269; FV[2] = 720; FV[3] = 291;
00116     cls = bn.classify(FV); //classify a given FV
00117     LINFO("FV1 belongs to class %i", cls);
00118 
00119     FV[0] = 458; FV[1] = 381; FV[2] = 350; FV[3] = 392;
00120     cls = bn.classify(FV); //classify a given FV
00121     LINFO("FV2 belongs to class %i", cls);
00122 }
00123 
00124 
00125 // ######################################################################
00126 /* So things look consistent in everyone's emacs... */
00127 /* Local Variables: */
00128 /* indent-tabs-mode: nil */
00129 /* End: */
Generated on Sun May 8 08:40:59 2011 for iLab Neuromorphic Vision Toolkit by  doxygen 1.6.3