ScaleRemoveSurprise.H

Go to the documentation of this file.
00001 /*!@file Surprise/ScaleRemoveSurprise.H attempt to remove surprise from image */
00002 
00003 // //////////////////////////////////////////////////////////////////// //
00004 // The iLab Neuromorphic Vision C++ Toolkit - Copyright (C) 2001 by the //
00005 // University of Southern California (USC) and the iLab at USC.         //
00006 // See http://iLab.usc.edu for information about this project.          //
00007 // //////////////////////////////////////////////////////////////////// //
00008 // Major portions of the iLab Neuromorphic Vision Toolkit are protected //
00009 // under the U.S. patent ``Computation of Intrinsic Perceptual Saliency //
00010 // in Visual Environments, and Applications'' by Christof Koch and      //
00011 // Laurent Itti, California Institute of Technology, 2001 (patent       //
00012 // pending; application number 09/912,225 filed July 23, 2001; see      //
00013 // http://pair.uspto.gov/cgi-bin/final/home.pl for current status).     //
00014 // //////////////////////////////////////////////////////////////////// //
00015 // This file is part of the iLab Neuromorphic Vision C++ Toolkit.       //
00016 //                                                                      //
00017 // The iLab Neuromorphic Vision C++ Toolkit is free software; you can   //
00018 // redistribute it and/or modify it under the terms of the GNU General  //
00019 // Public License as published by the Free Software Foundation; either  //
00020 // version 2 of the License, or (at your option) any later version.     //
00021 //                                                                      //
00022 // The iLab Neuromorphic Vision C++ Toolkit is distributed in the hope  //
00023 // that it will be useful, but WITHOUT ANY WARRANTY; without even the   //
00024 // implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR      //
00025 // PURPOSE.  See the GNU General Public License for more details.       //
00026 //                                                                      //
00027 // You should have received a copy of the GNU General Public License    //
00028 // along with the iLab Neuromorphic Vision C++ Toolkit; if not, write   //
00029 // to the Free Software Foundation, Inc., 59 Temple Place, Suite 330,   //
00030 // Boston, MA 02111-1307 USA.                                           //
00031 // //////////////////////////////////////////////////////////////////// //
00032 //
00033 // Primary maintainer for this file: T. Nathan Mundhenk <mundhenk@usc.edu>
00034 // $HeadURL: svn://isvn.usc.edu/software/invt/trunk/saliency/src/Surprise/ScaleRemoveSurprise.H $
00035 // $Id: ScaleRemoveSurprise.H 6795 2006-06-29 20:45:32Z rjpeters $
00036 //
00037 
00038 #ifndef SCALE_REMOVE_SURPRISE_H_DEFINED
00039 #define SCALE_REMOVE_SURPRISE_H_DEFINED
00040 
00041 #include "Surprise/RemoveSurprise.H"
00042 #include "Util/readConfig.H"
00043 #include "Image/MathOps.H"
00044 
00045 #define PIX_H2SV_TYPE PixH2SV1
00046 
00047 using namespace std;
00048 //! remove surprise using scales, FLOAT is either float or double for precision
00049 template <class FLOAT> class ScaleRemoveSurprise
00050 {
00051 public:
00052   //! default constructor, call with base image size for frames
00053   ScaleRemoveSurprise(const ushort sizeX,
00054                       const ushort sizeY,
00055                       const string confFile = "null");
00056   //! default destructor
00057   ~ScaleRemoveSurprise();
00058   //! is called by default constructor, sets stuff up
00059   void SRSinit(const ushort sizeX,
00060                const ushort sizeY);
00061   //! input a raw frame, give the frame number as well
00062   void SRSinputRawImage(const Image<PixRGB<FLOAT> >& rawImage,
00063                         const uint frame);
00064   //! input the base saliency map for this frame
00065   void SRSinputSalMap(const Image<FLOAT>& salMap);
00066   //! input an "anti" image set that reduce the process for target features
00067   void SRSsetAntiWeights();
00068   //! input an "anti" image set that reduce the process for target features
00069   void SRSsetAntiWeightsInteract(const uint aframes,
00070                                  const uint bframes);
00071   //! set up initial bayes weights for biasing from features
00072   void SRScomputeBayesFeatureBias(const uint frames,
00073                                   const string baseFileNamePrefix,
00074                                   const string antiFileNamePrefix);
00075   //! Open a bayes feature bias already computed
00076   void SRSopenBayesFeatureBias(const string baseFileNamePrefix,
00077                                const string antiFileNamePrefix);
00078   //! Find weights for biasing from features for current image
00079   void SRScomputeBayesFeatureCurrent(const uint frame,
00080                                      const string fileNamePrefix);
00081   //! process this movie frame
00082   void SRSprocessFrame();
00083   //! get the resulting frame processed
00084   Image<PixRGB<FLOAT> >               SRSgetFrame()     const;
00085   //! get the difference image between the input and final output
00086   Image<PixRGB<FLOAT> >               SRSgetDiffImage() const;
00087   //! compute difference difference parts for this image over rawImage
00088   std::vector<Image<PixRGB<FLOAT> > > SRSgetDiffParts() const;
00089   //! compute the combined beta map for all scales
00090   std::vector<Image<FLOAT> >          SRSgetBetaParts() const;
00091 private:
00092   //! Vector of surprise removers
00093   std::vector<RemoveSurprise<PIX_H2SV_TYPE<FLOAT>,PixHyper<FLOAT,6>,FLOAT> >
00094   itsRemoveSurprise;
00095   //! base for readConfig
00096   readConfig itsReadConfig;
00097   //! result image per scale
00098   std::vector<Image<PixRGB<FLOAT> > > itsResultImages;
00099   //! bias to apply to each scale
00100   std::vector<FLOAT>      itsScaleBias;
00101   //! Power to the filters at each scale
00102   std::vector<FLOAT>      itsScalePower;
00103   //! how much to desaturate surprising color
00104   std::vector<FLOAT>      itsDesatBias;
00105   //! store reverse computed filter sizez Z
00106   std::vector<FLOAT>      itsFilterSizesZ;
00107   //! store the actual pyramid image sizes reverse computed
00108   std::vector<ushort>     itsImageSizesX;
00109   //! store the actual pyramid image sizes reverse computed
00110   std::vector<ushort>     itsImageSizesY;
00111   //! store reverse computed filter sizez X
00112   std::vector<ushort>     itsFilterSizesX;
00113   //! store reverse computed filter sizez Y
00114   std::vector<ushort>     itsFilterSizesY;
00115   //! the raw input image
00116   Image<PixRGB<FLOAT> >   itsRawImage;
00117   //! the final image
00118   Image<PixRGB<FLOAT> >   itsFinalImage;
00119   //! stored salmap frame
00120   Image<FLOAT>            itsSalMap;
00121   //! base correlation image
00122   Image<FLOAT>            itsBaseCorr;
00123   //! compute R from Corr for display purposes
00124   Image<FLOAT>            itsBaseR;
00125   //! base image mean
00126   Image<FLOAT>            itsBaseMean;
00127   //! base image STD
00128   Image<FLOAT>            itsBaseSTD;
00129   //! base image SS
00130   Image<FLOAT>            itsBaseSS;
00131   //! base likelyhood image
00132   Image<FLOAT>            itsBaseLikelyhood;
00133   //! Non normalized likelyhood
00134   Image<FLOAT>            itsNonNormalizedBaseL;
00135   //! anti correlation image
00136   Image<FLOAT>            itsAntiCorr;
00137   //! compute R from Corr for display purposes
00138   Image<FLOAT>            itsAntiR;
00139   //! anti image mean
00140   Image<FLOAT>            itsAntiMean;
00141   //! anti image STD
00142   Image<FLOAT>            itsAntiSTD;
00143   //! anti image SS
00144   Image<FLOAT>            itsAntiSS;
00145   //! anti likelyhood image
00146   Image<FLOAT>            itsAntiLikelyhood;
00147   //! Non normalized likelyhood
00148   Image<FLOAT>            itsNonNormalizedAntiL;
00149   //! Bayesian P image between anti and base image and input
00150   Image<FLOAT>            itsBayesImage;
00151   //! Augmented bayes image for beliefs
00152   Image<FLOAT>            itsBeliefImage;
00153   //! bias to apply to X axis convolution
00154   FLOAT       itsAxisBiasX;
00155   //! bias to apply to Y axis convolution
00156   FLOAT       itsAxisBiasY;
00157   //! bias to apply to Z axis convolution
00158   FLOAT       itsAxisBiasZ;
00159   //! bias to apply to intensity channel
00160   FLOAT       itsINBias;
00161   //! bias to apply to direction channel
00162   FLOAT       itsDRBias;
00163   //! bias to apply to flicker channel
00164   FLOAT       itsFLBias;
00165   //! bias to apply to gaussian channel
00166   FLOAT       itsGABias;
00167   //! bias to apply to red/green channel
00168   FLOAT       itsRGBias;
00169   //! bias to apply to blue/yellow channel
00170   FLOAT       itsBYBias;
00171   //! Lambda to smooth reaction of filters over time
00172   FLOAT       itsLambda;
00173   //! How big should we convolve in standard deviation
00174   FLOAT       itsStdSize;
00175   //! What should be the size of the temporal filter
00176   FLOAT       itsZSigma;
00177   //! Bias to H1
00178   FLOAT       itsH1bias;
00179   //! Bias to H2
00180   FLOAT       itsH2bias;
00181   //! Bias to S
00182   FLOAT       itsSbias;
00183   //! Bias to V
00184   FLOAT       itsVbias;
00185   //! The current video frame we are looking at
00186   uint        itsFrame;
00187   //! base image N
00188   uint        itsBaseN;
00189   //! anti image N
00190   uint        itsAntiN;
00191   //! base size of the filters used in the image pyramid e.g. 5 or 9
00192   ushort      itsBaseFilterSize;
00193   //! LevelSpec LevMin
00194   ushort      itsLevMin;
00195   //! LevelSpec LevMax
00196   ushort      itsLevMax;
00197   //! LevelSpec DelMin
00198   ushort      itsDelMin;
00199   //! LevelSpec DelMax
00200   ushort      itsDelMax;
00201   //! LevelSpec itsMapLevel
00202   ushort      itsMapLevel;
00203   //! LevelSpec itsMaxIndex
00204   ushort      itsMaxIndex;
00205   //! LevelSpec itsMaxDepth
00206   ushort      itsMaxDepth;
00207   //! This images size X
00208   ushort      itsImageSizeX;
00209   //! This images size Y
00210   ushort      itsImageSizeY;
00211   //! This images size X at first pyramid level
00212   ushort      itsImageBaseX;
00213   //! This images size Y at first pyramid level
00214   ushort      itsImageBaseY;
00215   //! The filter size X in pyramid
00216   ushort      itsFilterSizeX;
00217   //! The filter size Y in pyramid
00218   ushort      itsFilterSizeY;
00219   //! should we use a true kalman filter
00220   bool        itsUseKalman;
00221   //! should we use the max level and not sum for conspicuity maps?
00222   bool        itsUseMaxLevel;
00223 };
00224 
00225 
00226 #endif
Generated on Sun May 8 08:42:19 2011 for iLab Neuromorphic Vision Toolkit by  doxygen 1.6.3