HMM.H

Go to the documentation of this file.
00001 /*!@file Learn/HMM.H Hidden Markov Models */
00002 
00003 
00004 // //////////////////////////////////////////////////////////////////// //
00005 // The iLab Neuromorphic Vision C++ Toolkit - Copyright (C) 2000-2005   //
00006 // by the University of Southern California (USC) and the iLab at USC.  //
00007 // See http://iLab.usc.edu for information about this project.          //
00008 // //////////////////////////////////////////////////////////////////// //
00009 // Major portions of the iLab Neuromorphic Vision Toolkit are protected //
00010 // under the U.S. patent ``Computation of Intrinsic Perceptual Saliency //
00011 // in Visual Environments, and Applications'' by Christof Koch and      //
00012 // Laurent Itti, California Institute of Technology, 2001 (patent       //
00013 // pending; application number 09/912,225 filed July 23, 2001; see      //
00014 // http://pair.uspto.gov/cgi-bin/final/home.pl for current status).     //
00015 // //////////////////////////////////////////////////////////////////// //
00016 // This file is part of the iLab Neuromorphic Vision C++ Toolkit.       //
00017 //                                                                      //
00018 // The iLab Neuromorphic Vision C++ Toolkit is free software; you can   //
00019 // redistribute it and/or modify it under the terms of the GNU General  //
00020 // Public License as published by the Free Software Foundation; either  //
00021 // version 2 of the License, or (at your option) any later version.     //
00022 //                                                                      //
00023 // The iLab Neuromorphic Vision C++ Toolkit is distributed in the hope  //
00024 // that it will be useful, but WITHOUT ANY WARRANTY; without even the   //
00025 // implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR      //
00026 // PURPOSE.  See the GNU General Public License for more details.       //
00027 //                                                                      //
00028 // You should have received a copy of the GNU General Public License    //
00029 // along with the iLab Neuromorphic Vision C++ Toolkit; if not, write   //
00030 // to the Free Software Foundation, Inc., 59 Temple Place, Suite 330,   //
00031 // Boston, MA 02111-1307 USA.                                           //
00032 // //////////////////////////////////////////////////////////////////// //
00033 //
00034 // Primary maintainer for this file: Lior Elazary <elazary@usc.edu>
00035 // $HeadURL: $
00036 // $Id: $
00037 //
00038 
00039 #ifndef LEARN_HMM_H_DEFINED
00040 #define LEARN_HMM_H_DEFINED
00041 
00042 #include "Image/Image.H"
00043 #include "Image/Pixels.H"
00044 #include "Image/ColorOps.H"
00045 #include "Util/Types.H" // for uint
00046 #include <vector>
00047 #include <string>
00048 #include <map>
00049 
00050 template <class T>
00051 class HMM
00052 {
00053 public:
00054 
00055   struct Path
00056   {
00057     double prob;
00058     std::vector<size_t> path;
00059 
00060     Path() :
00061       prob(0)
00062     {}
00063   };
00064 
00065   struct SeqInfo
00066   {
00067     std::vector<double>             scale;
00068     std::vector< std::vector<double> > alpha;
00069     std::vector< std::vector<double> > beta;
00070     std::vector< std::vector<double> >        gamma;
00071     std::vector< std::vector< std::vector<double> > > xi;
00072 
00073     double prob;
00074   };
00075   
00076 
00077   HMM() {}
00078 
00079   HMM(const std::vector<T>& states,
00080       const std::vector<T>& observations,
00081       const std::string& name = "");
00082 
00083   //! Destructor
00084   ~HMM();
00085 
00086   //! Set the state transitions
00087   void setStateTransition(const T fromState, const T toState, double prob);
00088 
00089   //! The state emission probability
00090   void setStateEmission(const T state, const T emission, double prob);
00091 
00092   //! Set the current prob of which state we are in
00093   void setCurrentState(const T state, double prob);
00094  
00095   //! Find the most likely sequence of hidden states given the observations and
00096   //! return the probability of this path.
00097   // This alg is using the Viterbi algorithm to find the most probable path
00098   // and the forward alg to find the prob of this path
00099   std::vector<T> getLikelyStates(const std::vector<T> observations, 
00100       double& maxPathProb = double()); 
00101 
00102   //! Iterate through the path given one observation
00103   void iteratePath(const T observation);
00104 
00105   //! Forward alg ie. compute P(Obj | currentHMMModel)
00106   double forward(const std::vector<T> observations);
00107 
00108   //! Backward alg
00109   double backward(const std::vector<T> observations);
00110   
00111 
00112   //! Train the model by changing the state transitions and 
00113   //! state emittions for the given observation
00114   void train(const std::vector< std::vector<T> > observations, size_t numIterations);
00115 
00116   //! Train the model by changing the state transitions and 
00117   //! state emittions for the given observation
00118   //! batch update per Fundamentals of Speech Recognition -
00119   //! by Lawrence Rabiner , Biing-Hwang Juang
00120   void train(const std::vector<T> observations, size_t numIterations);
00121  
00122   void computeXi(const std::vector<T> observations);
00123   void computeGamma(const std::vector<T> observations);
00124   
00125 
00126   //! Get the max path so far
00127   std::vector<T> getMaxPath(double& maxPathProb);
00128 
00129   //! Show the internal states and observations of the HMM
00130   void show();
00131 
00132   //! Get the hmm name
00133   std::string getName() { return itsName; }
00134   
00135  
00136 private:
00137   std::string  itsName;
00138 
00139   std::vector<T> itsStates;
00140   std::vector<T> itsObservations;
00141 
00142   Image<double> itsStateTransitions;
00143   Image<double> itsStateEmissions;
00144 
00145   //Map to find the index in the matrix
00146   std::map<T,size_t> itsStatesMap;
00147   std::map<T,size_t> itsObservationsMap;
00148 
00149   std::vector<Path>               itsCurrentPath;
00150   
00151   SeqInfo       itsSeqInfo;
00152   
00153   
00154 };
00155 
00156 // ######################################################################
00157 /* So things look consistent in everyone's emacs... */
00158 /* Local Variables: */
00159 /* indent-tabs-mode: nil */
00160 /* End: */
00161 
00162 #endif // LEARN_BAYES_H_DEFINED
Generated on Sun May 8 08:40:58 2011 for iLab Neuromorphic Vision Toolkit by  doxygen 1.6.3