00001 /*!@file VFAT/NPclassify.H Test the nonparametric classifier 00002 */ 00003 00004 // //////////////////////////////////////////////////////////////////// // 00005 // The iLab Neuromorphic Vision C++ Toolkit - Copyright (C) 2001 by the // 00006 // University of Southern California (USC) and the iLab at USC. // 00007 // See http://iLab.usc.edu for information about this project. // 00008 // //////////////////////////////////////////////////////////////////// // 00009 // Major portions of the iLab Neuromorphic Vision Toolkit are protected // 00010 // under the U.S. patent ``Computation of Intrinsic Perceptual Saliency // 00011 // in Visual Environments, and Applications'' by Christof Koch and // 00012 // Laurent Itti, California Institute of Technology, 2001 (patent // 00013 // pending; application number 09/912,225 filed July 23, 2001; see // 00014 // http://pair.uspto.gov/cgi-bin/final/home.pl for current status). // 00015 // //////////////////////////////////////////////////////////////////// // 00016 // This file is part of the iLab Neuromorphic Vision C++ Toolkit. // 00017 // // 00018 // The iLab Neuromorphic Vision C++ Toolkit is free software; you can // 00019 // redistribute it and/or modify it under the terms of the GNU General // 00020 // Public License as published by the Free Software Foundation; either // 00021 // version 2 of the License, or (at your option) any later version. // 00022 // // 00023 // The iLab Neuromorphic Vision C++ Toolkit is distributed in the hope // 00024 // that it will be useful, but WITHOUT ANY WARRANTY; without even the // 00025 // implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR // 00026 // PURPOSE. See the GNU General Public License for more details. // 00027 // // 00028 // You should have received a copy of the GNU General Public License // 00029 // along with the iLab Neuromorphic Vision C++ Toolkit; if not, write // 00030 // to the Free Software Foundation, Inc., 59 Temple Place, Suite 330, // 00031 // Boston, MA 02111-1307 USA. // 00032 // //////////////////////////////////////////////////////////////////// // 00033 // 00034 // Primary maintainer for this file: T Nathan Mundhenk <mundhenk@usc.edu> 00035 // $HeadURL: svn://isvn.usc.edu/software/invt/trunk/saliency/src/VFAT/NPclassify.H $ 00036 // $Id: NPclassify.H 6393 2006-03-26 00:57:36Z rjpeters $ 00037 // 00038 00039 #ifndef NPCLASSIFY_H_DEFINED 00040 #define NPCLASSIFY_H_DEFINED 00041 00042 #include <vector> 00043 #include "Util/readConfig.H" 00044 00045 class NPclassify 00046 { 00047 private: 00048 std::vector<long> children; 00049 std::vector<long> parent; 00050 std::vector<long> childMapTot; 00051 std::vector<long> childMapTotLast; 00052 std::vector<long> stem; 00053 std::vector<long> root; 00054 std::vector<long> master; 00055 std::vector<long> masterIndex; 00056 std::vector<long> classSize; 00057 std::vector<long> childInterCount; 00058 std::vector<long> idealLinks; 00059 //! density for this point 00060 std::vector<double> density; 00061 std::vector<double> distance; 00062 std::vector<double> meanInterDistance; 00063 std::vector<double> meanInterChild; 00064 std::vector<double> meanInterDensity; 00065 std::vector<double> stdInterDistance; 00066 std::vector<double> stdInterDensity; 00067 std::vector<double> stdInterChild; 00068 std::vector<double> trainMeasure; 00069 //! am I a stem for this class 00070 std::vector<bool> revStem; 00071 std::vector<bool> childMapDone; 00072 std::vector<bool> lowDensity; 00073 std::vector<bool> selected; 00074 std::vector< std::vector<long> > child; 00075 std::vector< std::vector<long> > childMap; 00076 std::vector< std::vector<long> > childInterMap; 00077 std::vector< std::vector<long> > Class; 00078 std::vector< std::vector<double> > D; 00079 std::vector< std::vector<double> > Dis; 00080 std::vector< std::vector<double> > Space; 00081 long spaceSize,stems,roots,iteration,defaultSize; 00082 long minDist,minChild; 00083 long hardClassSize,hardLinkSize; 00084 double distanceCut, childCut; 00085 double maxDensity,trainChildWeight; 00086 double Con1,Con2,Con3; 00087 double sumSquares,sum; 00088 double meanDistance,stdDistance,meanChildren,stdChildren; 00089 double meanChildMap,stdChildMap,meanDensity,stdDensity; 00090 double DWeight1, CWeight1, IDWeight1, ICWeight1; 00091 double DWeight2, CWeight2, IDWeight2, ICWeight2; 00092 double DenWeight1, DenWeight2, preDenWeight1, preDenWeight2; 00093 double thresh1,thresh2,thresh3,thresh4,measure1,measure2; 00094 bool notDone; 00095 double polyDensObjectCut1,polyDensObjectCut2,polyDensObjectCut3; 00096 double polySpaceChildCut1,polySpaceChildCut2,polySpaceChildCut3; 00097 bool CLS; 00098 00099 // ***************************************** 00100 // PRIVATE METHODS 00101 // ***************************************** 00102 //! convolve your space (first method) 00103 void convolveSpace(); 00104 //! convolve your space (revision 1) 00105 void convolveSpace2(); 00106 //! link your points together 00107 void linkSpace(); 00108 //! map space. Who is below me 00109 void mapSpace(); 00110 //! run your analisys on the space group based upon group weights, on length 00111 void analizeSpace(); 00112 //! cut lengths, link groups, traverse tree 00113 void evolveSpace(); 00114 //! find interclass variance 00115 void analizeInterSpace(); 00116 //! evolve space again using interclass variance 00117 void evolveInterSpace(); 00118 //! computes the master lists of all points in classes 00119 void computeMasters(); 00120 //! resizes all vectors if more space is added 00121 void resizeSpace(); 00122 public: 00123 int doLinkMap,doDensityMap,doClassMap,usePolySet; 00124 // ***************************************** 00125 // PUBLIC METHODS 00126 // ***************************************** 00127 //! create object with readConfig as defaults 00128 NPclassify(readConfig &settings, readConfig &polySet, 00129 bool commandLineSettings = false); 00130 ~NPclassify(); 00131 //! input command line settings for some variables insted of using .conf 00132 void inputCommandLineSettings(double _distance, double _children, 00133 double Idistance, double Ichildren, 00134 long _hardClassSize, long _hardLinkSize, 00135 double _polyDensObjectCut1, 00136 double _polyDensObjectCut2, 00137 double _polyDensObjectCut3); 00138 //! add a point to the space 00139 void addPoint(std::vector<long> point); 00140 //! add whole space (concatinates if data is there) 00141 /*! 00142 @param space This is a set of feature vectors as a vector of vectors 00143 @param sSize This is how many elements you are adding leave blank if \ 00144 the number of elements equals the vector size 00145 */ 00146 void addSpace(std::vector<std::vector<double> > &space,long sSize = 0); 00147 //! echo the space you are working in 00148 void echoSpace(); 00149 //! reset the dataset to empty (dose not resize vectors) 00150 void resetSpace(); 00151 //! classify space based upon rules given, for the first time 00152 void classifySpaceNew(); 00153 //! classify space using K-Means 00154 void classifySpaceKmeans(unsigned int K); 00155 //! classify space in subsequent iterations 00156 void classifySpacePartial(); 00157 //! return how many stems there are (how many classes) 00158 long getStemNumber(); 00159 //! return the max density value 00160 double getMaxDensity(); 00161 //! return if this point is a low density point 00162 bool isLowDensity(long item); 00163 //! return if this item is a stem 00164 bool isStem(long item); 00165 //! return density weight map (linear) 00166 std::vector<double> getDensity(); 00167 //! Returns a vector of all class parents 00168 std::vector<long> getStems(); 00169 //! Return how many points/vectors are in class n (1... n) 00170 long getClassSize(long _Class); 00171 //! return what is set as the minimum class size 00172 long getMinClassSize(); 00173 //! Return class n as a vector (Set of all points/vectors in this class) 00174 std::vector<long> getClass(long _Class); 00175 //! Return item n from class m 00176 long getClass(long _Class, long item); 00177 //! Return feature m of vector n 00178 double getFeature(long m_feature_index, long n_vector_index); 00179 //! returns parents 00180 std::vector<long> getParents(); 00181 //! Returns a vector of all decendants (children, grandchildren) or all nodes 00182 std::vector<std::vector<long> > getChildren(); 00183 //! calculate and return simple bounding boxes for classes 00184 std::vector<std::vector<long> > getBoundingBoxes(); 00185 //! analyze classification stratagy. create meta classifier 00186 void metaClassify(int objects); 00187 }; 00188 00189 #endif 00190 00191 00192 // ###################################################################### 00193 /* So things look consistent in everyone's emacs... */ 00194 /* Local Variables: */ 00195 /* indent-tabs-mode: nil */ 00196 /* End: */