00001 /*!@file HMAX/test-hmax5.C Test Hmax class and compare to original code */ 00002 00003 // //////////////////////////////////////////////////////////////////// // 00004 // The iLab Neuromorphic Vision C++ Toolkit - Copyright (C) 2001 by the // 00005 // University of Southern California (USC) and the iLab at USC. // 00006 // See http://iLab.usc.edu for information about this project. // 00007 // //////////////////////////////////////////////////////////////////// // 00008 // Major portions of the iLab Neuromorphic Vision Toolkit are protected // 00009 // under the U.S. patent ``Computation of Intrinsic Perceptual Saliency // 00010 // in Visual Environments, and Applications'' by Christof Koch and // 00011 // Laurent Itti, California Institute of Technology, 2001 (patent // 00012 // pending; application number 09/912,225 filed July 23, 2001; see // 00013 // http://pair.uspto.gov/cgi-bin/final/home.pl for current status). // 00014 // //////////////////////////////////////////////////////////////////// // 00015 // This file is part of the iLab Neuromorphic Vision C++ Toolkit. // 00016 // // 00017 // The iLab Neuromorphic Vision C++ Toolkit is free software; you can // 00018 // redistribute it and/or modify it under the terms of the GNU General // 00019 // Public License as published by the Free Software Foundation; either // 00020 // version 2 of the License, or (at your option) any later version. // 00021 // // 00022 // The iLab Neuromorphic Vision C++ Toolkit is distributed in the hope // 00023 // that it will be useful, but WITHOUT ANY WARRANTY; without even the // 00024 // implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR // 00025 // PURPOSE. See the GNU General Public License for more details. // 00026 // // 00027 // You should have received a copy of the GNU General Public License // 00028 // along with the iLab Neuromorphic Vision C++ Toolkit; if not, write // 00029 // to the Free Software Foundation, Inc., 59 Temple Place, Suite 330, // 00030 // Boston, MA 02111-1307 USA. // 00031 // //////////////////////////////////////////////////////////////////// // 00032 // 00033 // Primary maintainer for this file: Dan Parks <danielfp@usc.edu> 00034 // $HeadURL: svn://isvn.usc.edu/software/invt/trunk/saliency/src/CUDA/extractcudapatches.C $ 00035 // $Id: extractcudapatches.C 12962 2010-03-06 02:13:53Z irock $ 00036 // 00037 00038 #include "Component/ModelManager.H" 00039 #include "GUI/XWindow.H" 00040 #include "CUDA/CudaHmaxFL.H" 00041 #include "CUDA/CudaHmax.H" 00042 #include "CUDA/CudaImage.H" 00043 #include "CUDA/CudaCutPaste.H" 00044 #include "Image/Rectangle.H" 00045 #include "CUDA/CudaMathOps.H" 00046 #include "Image/Normalize.H" 00047 #include "Image/Transforms.H" 00048 #include "CUDA/CudaConvolutions.H" 00049 #include "Learn/svm.h" 00050 #include "Media/FrameSeries.H" 00051 #include "nub/ref.h" 00052 #include "Raster/GenericFrame.H" 00053 #include "Raster/Raster.H" 00054 #include "Util/Types.H" 00055 #include "Util/log.H" 00056 00057 #include <fstream> 00058 #include <iostream> 00059 #include <string> 00060 #include <unistd.h> 00061 #include <cstdlib> 00062 00063 00064 // number of orientations to use in HmaxFL 00065 #define NORI 4 00066 #define NUM_PATCHES_PER_SIZE 250 00067 00068 00069 int main(const int argc, const char **argv) 00070 { 00071 00072 MYLOGVERB = LOG_INFO; 00073 ModelManager *mgr = new ModelManager("Extract Patches for Hmax with Feature Learning"); 00074 00075 mgr->exportOptions(MC_RECURSE); 00076 00077 // required arguments 00078 // <c1patchesDir> <trainPosDir> 00079 00080 if (mgr->parseCommandLine( 00081 (const int)argc, (const char**)argv, "<cudadev> <c1patchesDir> <trainPosDir>", 3, 3) == false) 00082 return 1; 00083 00084 std::vector<int> scss(9); 00085 scss[0] = 1; scss[1] = 3; scss[2] = 5; scss[3] = 7; scss[4] = 9; 00086 scss[5] = 11; scss[6] = 13; scss[7] = 15; scss[8] = 17; 00087 std::vector<int> spss(8); 00088 spss[0] = 8; spss[1] = 10; spss[2] = 12; spss[3] = 14; 00089 spss[4] = 16; spss[5] = 18; spss[6] = 20; spss[7] = 22; 00090 // std::vector<int> scss(4); 00091 // scss[0] = 3; scss[1] = 7; scss[2] = 11; scss[3] = 15; 00092 // std::vector<int> spss(4); 00093 // spss[0] = 10; spss[1] = 14; spss[2] = 18; spss[3] = 22; 00094 00095 int dev = strtol(mgr->getExtraArg(0).c_str(),NULL,0); 00096 MemoryPolicy mp = GLOBAL_DEVICE_MEMORY; 00097 std::string c1PatchesBaseDir; 00098 std::string trainPosName; // Directory where positive images are 00099 c1PatchesBaseDir = mgr->getExtraArg(1); 00100 trainPosName = mgr->getExtraArg(2); 00101 00102 CudaHmaxFL hmax(mp,dev,NORI, spss, scss); 00103 00104 // Extract random patches from a set of images in a positive training directory 00105 std::vector<std::string> trainPos = hmax.readDir(trainPosName); 00106 int posTrainSize = trainPos.size(); 00107 00108 //Image<byte> inputb; 00109 00110 Image<float> *trainPosImages = new Image<float>[posTrainSize]; 00111 00112 std::cout << "Scanned training and testing images" << std::endl; 00113 00114 for(int imgInd = 0; imgInd < posTrainSize; imgInd++) { 00115 //inputb = Raster::ReadGray(trainPos[imgInd]); 00116 //trainPosImages[imgInd] = Image<float>(inputb); 00117 trainPosImages[imgInd] = Raster::ReadGrayNTSC(trainPos[imgInd]); 00118 } 00119 00120 std::vector<int> pS(4); 00121 pS[0] = 4; pS[1] = 8, pS[2] = 12; pS[3] = 16; 00122 00123 // Learn the appropriate simple S2 patches from the C1 results 00124 hmax.extractRandC1Patches(trainPosImages,posTrainSize,pS,NUM_PATCHES_PER_SIZE,NORI); 00125 std::cout << "Completed extraction of C1 Patches" << std::endl; 00126 00127 00128 delete [] trainPosImages; 00129 00130 hmax.writeOutC1Patches(c1PatchesBaseDir); 00131 return 0; 00132 } 00133 00134 00135 00136 00137 // ###################################################################### 00138 /* So things look consistent in everyone's emacs... */ 00139 /* Local Variables: */ 00140 /* indent-tabs-mode: nil */ 00141 /* End: */