00001 /*!@file Util/stats.C STATS classes */ 00002 00003 // //////////////////////////////////////////////////////////////////// // 00004 // The iLab Neuromorphic Vision C++ Toolkit - Copyright (C) 2001 by the // 00005 // University of Southern California (USC) and the iLab at USC. // 00006 // See http://iLab.usc.edu for information about this project. // 00007 // //////////////////////////////////////////////////////////////////// // 00008 // Major portions of the iLab Neuromorphic Vision Toolkit are protected // 00009 // under the U.S. patent ``Computation of Intrinsic Perceptual Saliency // 00010 // in Visual Environments, and Applications'' by Christof Koch and // 00011 // Laurent Itti, California Institute of Technology, 2001 (patent // 00012 // pending; application number 09/912,225 filed July 23, 2001; see // 00013 // http://pair.uspto.gov/cgi-bin/final/home.pl for current status). // 00014 // //////////////////////////////////////////////////////////////////// // 00015 // This file is part of the iLab Neuromorphic Vision C++ Toolkit. // 00016 // // 00017 // The iLab Neuromorphic Vision C++ Toolkit is free software; you can // 00018 // redistribute it and/or modify it under the terms of the GNU General // 00019 // Public License as published by the Free Software Foundation; either // 00020 // version 2 of the License, or (at your option) any later version. // 00021 // // 00022 // The iLab Neuromorphic Vision C++ Toolkit is distributed in the hope // 00023 // that it will be useful, but WITHOUT ANY WARRANTY; without even the // 00024 // implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR // 00025 // PURPOSE. See the GNU General Public License for more details. // 00026 // // 00027 // You should have received a copy of the GNU General Public License // 00028 // along with the iLab Neuromorphic Vision C++ Toolkit; if not, write // 00029 // to the Free Software Foundation, Inc., 59 Temple Place, Suite 330, // 00030 // Boston, MA 02111-1307 USA. // 00031 // //////////////////////////////////////////////////////////////////// // 00032 // 00033 // Primary maintainer for this file: T Nathan Mundhenk <mundhenk@usc.edu> 00034 // $HeadURL: svn://isvn.usc.edu/software/invt/trunk/saliency/src/Util/stats.C $ 00035 // $Id: stats.C 9632 2008-04-15 05:50:25Z mundhenk $ 00036 // 00037 00038 // ############################################################ 00039 // ############################################################ 00040 // ##### ---STATS--- 00041 // ##### Some basic statistical methods: 00042 // ##### T. Nathan Mundhenk nathan@mundhenk.com 00043 // ############################################################ 00044 // ############################################################ 00045 00046 #include "Util/Assert.H" 00047 #include "Util/stats.H" 00048 #include "Util/Types.H" 00049 #include "Util/log.H" 00050 #include <cmath> 00051 00052 template <class T> 00053 stats<T>::stats() 00054 { 00055 GGC = false; 00056 } 00057 template <class T> 00058 stats<T>::~stats() 00059 { 00060 } 00061 00062 00063 00064 template <class T> 00065 T stats<T>::mean(std::vector<T> &X) 00066 { 00067 ASSERT(X.size() > 0); 00068 T Xi = 0; 00069 for(unsigned int i = 0; i < X.size(); i++) 00070 { 00071 Xi = Xi + X[i]; 00072 } 00073 return Xb = Xi/X.size(); 00074 }; 00075 00076 template <class T> 00077 T stats<T>::findS(std::vector<T> &X, T Xbar) 00078 { 00079 ASSERT(X.size() > 0); 00080 T Xi = 0; 00081 for(unsigned int i = 0; i < X.size(); i++) 00082 { 00083 Xi = (pow(X[i],2)/X.size()) + Xi; 00084 } 00085 S2 = Xi - pow(Xbar,2); 00086 if(S > 0) 00087 return S = sqrt(S2); 00088 else 00089 return S = 0; 00090 }; 00091 00092 template <class T> 00093 T stats<T>::findS(std::vector<T> &X, T Xbar, T adj) 00094 { 00095 ASSERT(X.size() > 0); 00096 T Xi = 0; 00097 for(unsigned int i = 0; i < X.size(); i++) 00098 { 00099 Xi = (pow((X[i]+adj),2)/X.size()) + Xi; 00100 } 00101 S2 = Xi - pow((Xbar+adj),2); 00102 if(S2 > 0) 00103 S = sqrt(S2); 00104 else 00105 S = 0; 00106 return S; 00107 } 00108 00109 template <class T> 00110 T stats<T>::rRegression(std::vector<T> &X, std::vector<T> &Y) 00111 { 00112 ASSERT(X.size() == Y.size()); 00113 T Xmean = mean(X); 00114 T Ymean = mean(Y); 00115 Sx = findS(X,Xmean); 00116 Sy = findS(Y,Ymean); 00117 T hold = 0; 00118 for(unsigned int i = 0; i < X.size(); i++) 00119 { 00120 hold = ((X[i] - Xmean)*(Y[i] - Ymean)) + hold; 00121 } 00122 return r = hold/(X.size()*Sx*Sy); 00123 }; 00124 00125 #if 0 00126 // FIXME this function does not compile 00127 template <class T> 00128 T stats<T>::bRegression(std::vector<T> &X, std::vector<T> &Y) 00129 { 00130 ASSERT(X.size() == Y.size()); 00131 T Xmean = mean(X); 00132 T Ymean = mean(Y); 00133 Sx = S(X,Xmean); // <-- FIXME compilation error here 00134 Sy = S(Y,Ymean); // <-- FIXME compilation error here 00135 T Zxy = 0; 00136 for(unsigned int i = 0; i < X.size(); i++) 00137 { 00138 Zxy = (((X[i] - Xmean)/Sx)*((Y[i] - Ymean)/Sy)) + Zxy; 00139 } 00140 return b = Zxy/X.size(); 00141 }; 00142 #endif 00143 00144 template <class T> 00145 T stats<T>::Bxy(T r, T Sx, T Sy) 00146 { 00147 return r*(Sy/Sx); 00148 }; 00149 00150 template <class T> 00151 T stats<T>::simpleANOVA(std::vector<T> &X, std::vector<T> &Y) 00152 { 00153 ASSERT(X.size() == Y.size()); 00154 float mean, meanX, meanY; 00155 float sumX = 0, sumY = 0; 00156 //find mean values 00157 for(unsigned int i = 0; i < X.size(); i++) 00158 { 00159 sumX += X[i]; 00160 sumY += Y[i]; 00161 } 00162 meanX = sumX/X.size(); 00163 meanY = sumY/Y.size(); 00164 mean = (sumY+sumX)/(X.size()+Y.size()); 00165 //find SSwithin and SStotal 00166 SSwithin = 0; 00167 SStotal = 0; 00168 for(unsigned int i = 0; i < X.size(); i++) 00169 { 00170 SSwithin += pow((X[i]-meanX),2); 00171 SSwithin += pow((Y[i]-meanY),2); 00172 00173 SStotal += pow((X[i]-mean),2); 00174 SStotal += pow((Y[i]-mean),2); 00175 } 00176 //find SSbetween 00177 SSbetween = 0; 00178 SSbetween = X.size() * (pow((meanX - mean),2)); 00179 SSbetween += Y.size() * (pow((meanY - mean),2)); 00180 00181 //create anova table stuff 00182 DFwithin = (X.size()+Y.size())-2; 00183 DFbetween = 1; 00184 MSbetween = (SSbetween/DFbetween); 00185 MSwithin = (SSwithin/DFwithin); 00186 return F = MSbetween/MSwithin; 00187 } 00188 00189 #if 0 00190 // FIXME this function does not compile 00191 template <class T> 00192 T stats<T>::decisionGGC(T mu1, T mu2, T sigma1, T sigma2, T PofA) 00193 { 00194 T PofB = 1 - PofA; 00195 00196 //find parts of the equation first 00197 T LeftTop = (mu2*pow(sigma1,2))-(mu1*pow(sigma2,2)); 00198 T Bottom = pow(sigma1,2)-pow(sigma2,2); 00199 T logVal = log((PofB*sigma1)/(PofA*sigma2)); 00200 T preLog = pow((mu1-mu2),2)+(2*(pow(sigma1,2)-pow(sigma2,2))); 00201 00202 //find D and D' 00203 // FIXME error here ('sgrt' unknown)... 00204 D = (LeftTop - ((sigma1*sigma2)*sgrt(preLog*logVal)))/Bottom; 00205 // FIXME and here ('sgrt' unknown)... 00206 Dprime = (LeftTop + ((sigma1*sigma2)*sgrt(preLog*logVal)))/Bottom; 00207 GGC = true; 00208 return D; 00209 } 00210 #endif 00211 00212 template <class T> 00213 T stats<T>::getDPrime() 00214 { 00215 ASSERT(GGC); 00216 return Dprime; 00217 } 00218 00219 template <class T> 00220 T stats<T>::getErrorGGC_2AFC(T mu1, T mu2, T sigma1, T sigma2) 00221 { 00222 LINFO("INPUT 2AFC u1 = %f, u2 = %f, s1 = %f, s2 = %f",mu1,mu2,sigma1,sigma2); 00223 float temp = fabs((mu1-mu2)/(sqrt(2*(pow(sigma1,2)+pow(sigma2,2))))); 00224 LINFO("ERFC(%f)",temp); 00225 return erfc(temp)/2; 00226 } 00227 00228 template <class T> 00229 T stats<T>::gauss(T x, T mu,T sigma) 00230 { 00231 return (1/(sqrt(2*3.14159*pow(sigma,2))))*exp((-1*pow((x-mu),2))/(2*pow(sigma,2))); 00232 } 00233 00234 00235 template class stats<float>; 00236 template class stats<double>; 00237 00238 // ###################################################################### 00239 /* So things look consistent in everyone's emacs... */ 00240 /* Local Variables: */ 00241 /* indent-tabs-mode: nil */ 00242 /* End: */