stats< T > Class Template Reference

Collaboration diagram for stats< T >:
Collaboration graph
[legend]

List of all members.

Public Member Functions

 stats ()
 Constructor.
 ~stats ()
 Destructor.
mean (std::vector< T > &X)
 The populational mean.
findS (std::vector< T > &X, T Xbar)
 The standard deviation of the population.
findS (std::vector< T > &X, T Xbar, T adj)
 The standard deviation of the population, adjust for negative numbers.
rRegression (std::vector< T > &X, std::vector< T > &Y)
 basic pearson r linear regression
bRegression (std::vector< T > &X, std::vector< T > &Y)
 regression coefficent slope
Bxy (T r, T Sx, T Sy)
 raw score regression coefficent
simpleANOVA (std::vector< T > &X, std::vector< T > &Y)
 This is a simple ANOVA for two groups.
decisionGGC (T mu1, T mu2, T sigma1, T sigma2, T PofA)
 find the decision boundry as described in Itti(2000) PhD Thesis pg. 145-8
getDPrime ()
 Return D' after running descisionGGC.
getErrorGGC_2AFC (T mu1, T mu2, T sigma1, T sigma2)
 Get the probability of Error for a 2AFC paradigm.
gauss (T x, T mu, T sigma)
 return the gaussian from f(x;mu,sigma) = guassian

Public Attributes

bool GGC
 some bools for ASSERTION testing
Xb
 X bar - the population mean for x.
Yb
 Y bar - the population mean for y.
S2
 S squared - population measure for variance.
Sx
 S - population measure for varaince.
Sy
S
r
 r - the corralation coefficent
b
 b - the regression coefficent slope
PA
 probability of A or B
PB
D
 decision boundrys
Dprime
SStotal
 SStotal, SSwithin, SSbetween.
SSwithin
SSbetween
DFwithin
DFbetween
MSwithin
MSbetween
F

Detailed Description

template<class T>
class stats< T >

Definition at line 54 of file stats.H.


Constructor & Destructor Documentation

template<class T >
stats< T >::stats (  )  [inline]

Constructor.

Definition at line 53 of file stats.C.

References stats< T >::GGC.

template<class T >
stats< T >::~stats (  )  [inline]

Destructor.

Definition at line 58 of file stats.C.


Member Function Documentation

template<class T>
T stats< T >::bRegression ( std::vector< T > &  X,
std::vector< T > &  Y 
)

regression coefficent slope

This can be use to fit the line of regression as Y' = b*(X - Xbar) + YBar

template<class T>
T stats< T >::Bxy ( r,
Sx,
Sy 
) [inline]

raw score regression coefficent

This can be use to fit the line of regression as Y' = Bxy*(X - Xbar) + YBar

Definition at line 145 of file stats.C.

template<class T>
T stats< T >::decisionGGC ( mu1,
mu2,
sigma1,
sigma2,
PofA 
)

find the decision boundry as described in Itti(2000) PhD Thesis pg. 145-8

Find a decision in the general gaussian case input mu's sigma's and P(X)'s for two events. This will return D. Use getDPrime() to get D' following this command.

Parameters:
mu1 mean for condition 1
mu2 mean for condition 2
sigma1 std dev for condition 1
sigma2 std dev for condition 2
PofA probability of A (0 to 1) PofB is determined as 1 - PofA
template<class T>
T stats< T >::findS ( std::vector< T > &  X,
Xbar,
adj 
) [inline]

The standard deviation of the population, adjust for negative numbers.

Definition at line 93 of file stats.C.

References ASSERT, stats< T >::S2, and sqrt().

template<class T>
T stats< T >::findS ( std::vector< T > &  X,
Xbar 
) [inline]

The standard deviation of the population.

Definition at line 77 of file stats.C.

References ASSERT, stats< T >::S2, and sqrt().

Referenced by EyeTrackerISCAN::getCalibrationSet(), stats< T >::rRegression(), CINNICstatsRun::runPointAndFlood(), and CINNICstatsRun::runStandardStats().

template<class T>
T stats< T >::gauss ( x,
mu,
sigma 
) [inline]

return the gaussian from f(x;mu,sigma) = guassian

Return a simple P(x) based upon the gaussian distribution with an input sample x and gaussian defined with mu as E(x) and sigma as E(x^2)

Definition at line 229 of file stats.C.

References exp(), and sqrt().

Referenced by segmentImageMerge2::SIMverganceSpring(), and segmentImageMerge::verganceSpring().

template<class T >
T stats< T >::getDPrime (  )  [inline]

Return D' after running descisionGGC.

Definition at line 213 of file stats.C.

References ASSERT, and stats< T >::GGC.

template<class T>
T stats< T >::getErrorGGC_2AFC ( mu1,
mu2,
sigma1,
sigma2 
) [inline]

Get the probability of Error for a 2AFC paradigm.

take the decision boundrys and find the probability of error from them. This is for Two Alternative forced choice paradigm

Parameters:
mu1 mean for condition 1
mu2 mean for condition 2
sigma1 std dev for condition 1
sigma2 std dev for condition 2
PofA probability of A (0 to 1) PofB is determined as 1 - PofA

Definition at line 220 of file stats.C.

References sqrt().

Referenced by CINNICstatsRun::polatSagi2AFC().

template<class T>
T stats< T >::mean ( std::vector< T > &  X  )  [inline]
template<class T>
T stats< T >::rRegression ( std::vector< T > &  X,
std::vector< T > &  Y 
) [inline]

basic pearson r linear regression

Definition at line 110 of file stats.C.

References ASSERT, stats< T >::findS(), stats< T >::mean(), stats< T >::r, and stats< T >::Sx.

Referenced by CINNICstatsRun::runStandardStats().

template<class T>
T stats< T >::simpleANOVA ( std::vector< T > &  X,
std::vector< T > &  Y 
) [inline]

This is a simple ANOVA for two groups.

input the raw scores for the two groups, let it run will run on assumption of SStotal = SSwithin + SSbetween

Definition at line 151 of file stats.C.

References ASSERT, stats< T >::mean(), and stats< T >::SStotal.


Member Data Documentation

template<class T>
T stats< T >::b

b - the regression coefficent slope

Definition at line 76 of file stats.H.

template<class T>
T stats< T >::D

decision boundrys

Definition at line 80 of file stats.H.

template<class T>
bool stats< T >::GGC

some bools for ASSERTION testing

Definition at line 63 of file stats.H.

Referenced by stats< T >::getDPrime(), and stats< T >::stats().

template<class T>
T stats< T >::PA

probability of A or B

Definition at line 78 of file stats.H.

template<class T>
T stats< T >::r

r - the corralation coefficent

Definition at line 74 of file stats.H.

Referenced by stats< T >::rRegression().

template<class T>
T stats< T >::S2

S squared - population measure for variance.

Definition at line 70 of file stats.H.

Referenced by stats< T >::findS(), and EyeTrackerISCAN::getCalibrationSet().

template<class T>
T stats< T >::SStotal

SStotal, SSwithin, SSbetween.

Definition at line 82 of file stats.H.

Referenced by stats< T >::simpleANOVA().

template<class T>
T stats< T >::Sx

S - population measure for varaince.

Definition at line 72 of file stats.H.

Referenced by stats< T >::rRegression().

template<class T>
T stats< T >::Xb

X bar - the population mean for x.

Definition at line 66 of file stats.H.

Referenced by stats< T >::mean().

template<class T>
T stats< T >::Yb

Y bar - the population mean for y.

Definition at line 68 of file stats.H.


The documentation for this class was generated from the following files:
Generated on Sun May 8 08:43:49 2011 for iLab Neuromorphic Vision Toolkit by  doxygen 1.6.3