00001 /*!@file HMAX/test-hmax5.C Test Hmax class and compare to original code */ 00002 00003 // //////////////////////////////////////////////////////////////////// // 00004 // The iLab Neuromorphic Vision C++ Toolkit - Copyright (C) 2001 by the // 00005 // University of Southern California (USC) and the iLab at USC. // 00006 // See http://iLab.usc.edu for information about this project. // 00007 // //////////////////////////////////////////////////////////////////// // 00008 // Major portions of the iLab Neuromorphic Vision Toolkit are protected // 00009 // under the U.S. patent ``Computation of Intrinsic Perceptual Saliency // 00010 // in Visual Environments, and Applications'' by Christof Koch and // 00011 // Laurent Itti, California Institute of Technology, 2001 (patent // 00012 // pending; application number 09/912,225 filed July 23, 2001; see // 00013 // http://pair.uspto.gov/cgi-bin/final/home.pl for current status). // 00014 // //////////////////////////////////////////////////////////////////// // 00015 // This file is part of the iLab Neuromorphic Vision C++ Toolkit. // 00016 // // 00017 // The iLab Neuromorphic Vision C++ Toolkit is free software; you can // 00018 // redistribute it and/or modify it under the terms of the GNU General // 00019 // Public License as published by the Free Software Foundation; either // 00020 // version 2 of the License, or (at your option) any later version. // 00021 // // 00022 // The iLab Neuromorphic Vision C++ Toolkit is distributed in the hope // 00023 // that it will be useful, but WITHOUT ANY WARRANTY; without even the // 00024 // implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR // 00025 // PURPOSE. See the GNU General Public License for more details. // 00026 // // 00027 // You should have received a copy of the GNU General Public License // 00028 // along with the iLab Neuromorphic Vision C++ Toolkit; if not, write // 00029 // to the Free Software Foundation, Inc., 59 Temple Place, Suite 330, // 00030 // Boston, MA 02111-1307 USA. // 00031 // //////////////////////////////////////////////////////////////////// // 00032 // 00033 // Primary maintainer for this file: Lior Elazary 00034 // $HeadURL: svn://isvn.usc.edu/software/invt/trunk/saliency/src/HMAX/test-hmaxFL.C $ 00035 // $Id: test-hmaxFL.C 12962 2010-03-06 02:13:53Z irock $ 00036 // 00037 00038 #include "Component/ModelManager.H" 00039 #include "GUI/XWindow.H" 00040 #include "HMAX/HmaxFL.H" 00041 #include "HMAX/Hmax.H" 00042 #include "Image/Image.H" 00043 #include "Image/ColorOps.H" 00044 #include "Image/CutPaste.H" 00045 #include "Image/ShapeOps.H" 00046 #include "Image/Rectangle.H" 00047 #include "Image/MathOps.H" 00048 #include "Image/MatrixOps.H" 00049 #include "Image/Transforms.H" 00050 #include "Image/Convolutions.H" 00051 #include "Learn/SVMClassifier.H" 00052 #include "Media/FrameSeries.H" 00053 #include "Media/TestImages.H" 00054 #include "nub/ref.h" 00055 #include "Raster/GenericFrame.H" 00056 #include "Transport/FrameInfo.H" 00057 #include "Raster/Raster.H" 00058 #include "Util/Types.H" 00059 #include "Util/log.H" 00060 00061 #include <fstream> 00062 #include <iostream> 00063 #include <iomanip> 00064 #include <string> 00065 #include <unistd.h> 00066 #include <cstdlib> 00067 00068 00069 // number of orientations to use in HmaxFL 00070 #define NORI 4 00071 #define NUM_PATCHES_PER_SIZE 250 00072 00073 int main(const int argc, const char **argv) 00074 { 00075 00076 MYLOGVERB = LOG_INFO; 00077 ModelManager *mgr = new ModelManager("Test Hmax with Feature Learning"); 00078 00079 nub::ref<InputFrameSeries> ifs(new InputFrameSeries(*mgr)); 00080 mgr->addSubComponent(ifs); 00081 00082 nub::ref<OutputFrameSeries> ofs(new OutputFrameSeries(*mgr)); 00083 mgr->addSubComponent(ofs); 00084 00085 00086 00087 mgr->exportOptions(MC_RECURSE); 00088 00089 // required arguments 00090 // <c1patchesDir> <dir|list> <id> <outputfile> 00091 // 00092 // <id> is the given id for the given set of images 00093 // --in only needs to happen if we are loading the patches 00094 00095 if (mgr->parseCommandLine( 00096 (const int)argc, (const char**)argv, "<c1patchesDir> <modelFile> <objectName> train=1/classify=0", 4, 4) == false) 00097 return 1; 00098 00099 // get an HmaxFL object: 00100 std::vector<int> scss(9); 00101 scss[0] = 1; scss[1] = 3; scss[2] = 5; scss[3] = 7; scss[4] = 9; 00102 scss[5] = 11; scss[6] = 13; scss[7] = 15; scss[8] = 17; 00103 std::vector<int> spss(8); 00104 spss[0] = 8; spss[1] = 10; spss[2] = 12; spss[3] = 14; 00105 spss[4] = 16; spss[5] = 18; spss[6] = 20; spss[7] = 22; 00106 HmaxFL hmax(NORI, spss, scss); 00107 00108 std::string c1PatchesBaseDir = mgr->getExtraArg(0); 00109 std::string modelFile = mgr->getExtraArg(1); 00110 std::string objName = mgr->getExtraArg(2); 00111 bool training = atoi(mgr->getExtraArg(3).c_str()); 00112 00113 hmax.readInC1Patches(c1PatchesBaseDir); 00114 00115 mgr->start(); 00116 00117 ifs->startStream(); 00118 00119 SVMClassifier classifier; 00120 00121 //Load the svm File 00122 if (!training) 00123 classifier.readModel(modelFile); 00124 00125 while(1) 00126 { 00127 Image< PixRGB<byte> > inputImg; 00128 const FrameState is = ifs->updateNext(); 00129 LINFO("Frame %i\n", ifs->frame()); 00130 if (is == FRAME_COMPLETE) 00131 break; 00132 00133 //grab the images 00134 GenericFrame input = ifs->readFrame(); 00135 if (!input.initialized()) 00136 break; 00137 inputImg = input.asRgb(); 00138 00139 Image<float> inputf = luminance(inputImg); 00140 00141 inputf = rescale(inputf, 128, 128); 00142 00143 std::vector<int> patchSizes = hmax.getC1PatchSizes(); 00144 00145 int objId = 0; 00146 //Get the metadata and find if we have the object name in the scene 00147 rutz::shared_ptr<GenericFrame::MetaData> 00148 metaData = input.getMetaData(std::string("SceneData")); 00149 if (metaData.get() != 0) { 00150 rutz::shared_ptr<TestImages::SceneData> sceneData; 00151 sceneData.dyn_cast_from(metaData); 00152 for (uint i = 0; i < sceneData->objects.size(); i++) { 00153 TestImages::ObjData objData = sceneData->objects[i]; 00154 if (objData.name == objName) 00155 objId = 1; 00156 } 00157 } 00158 00159 00160 //Compute C2 features 00161 float **c2Res = new float*[patchSizes.size()]; 00162 for(unsigned int i=0;i<patchSizes.size();i++) { 00163 c2Res[i] = new float[NUM_PATCHES_PER_SIZE]; 00164 } 00165 hmax.getC2(inputf,c2Res); 00166 00167 LINFO("C2 Processing Complete."); 00168 00169 //printf("%i ", objId); 00170 //for(unsigned int i=0;i<patchSizes.size();i++) 00171 // for(int j=0;j<NUM_PATCHES_PER_SIZE;j++) 00172 // printf("%i:%f ", (i*NUM_PATCHES_PER_SIZE+j+1), c2Res[i][j]); 00173 //printf("\n"); 00174 00175 00176 if (training) 00177 { 00178 classifier.train(modelFile,objId,c2Res,patchSizes.size(),NUM_PATCHES_PER_SIZE); 00179 } else { 00180 double predObjId = classifier.predict(c2Res,patchSizes.size(),NUM_PATCHES_PER_SIZE); 00181 printf("Obj id %i predicted %f", 00182 objId, predObjId); 00183 } 00184 00185 00186 for(unsigned int i=0;i<patchSizes.size();i++) { 00187 delete[] c2Res[i]; 00188 } 00189 delete [] c2Res; 00190 00191 00192 ofs->writeRGB(inputImg, "input", FrameInfo("input", SRC_POS)); 00193 } 00194 00195 00196 return 0; 00197 } 00198 00199 00200 // ###################################################################### 00201 /* So things look consistent in everyone's emacs... */ 00202 /* Local Variables: */ 00203 /* indent-tabs-mode: nil */ 00204 /* End: */