test-QuadTree.C

Go to the documentation of this file.
00001 /*!@file Learn/test-QuadTree.C QuadTree Multi-Class Classifier */
00002 // //////////////////////////////////////////////////////////////////// //
00003 // The iLab Neuromorphic Vision C++ Toolkit - Copyright (C) 2001 by the //
00004 // University of Southern California (USC) and the iLab at USC.         //
00005 // See http://iLab.usc.edu for information about this project.          //
00006 // //////////////////////////////////////////////////////////////////// //
00007 // Major portions of the iLab Neuromorphic Vision Toolkit are protected //
00008 // under the U.S. patent ``Computation of Intrinsic Perceptual Saliency //
00009 // in Visual Environments, and Applications'' by Christof Koch and      //
00010 // Laurent Itti, California Institute of Technology, 2001 (patent       //
00011 // pending; application number 09/912,225 filed July 23, 2001; see      //
00012 // http://pair.uspto.gov/cgi-bin/final/home.pl for current status).     //
00013 // //////////////////////////////////////////////////////////////////// //
00014 // This file is part of the iLab Neuromorphic Vision C++ Toolkit.       //
00015 //                                                                      //
00016 // The iLab Neuromorphic Vision C++ Toolkit is free software; you can   //
00017 // redistribute it and/or modify it under the terms of the GNU General  //
00018 // Public License as published by the Free Software Foundation; either  //
00019 // version 2 of the License, or (at your option) any later version.     //
00020 //                                                                      //
00021 // The iLab Neuromorphic Vision C++ Toolkit is distributed in the hope  //
00022 // that it will be useful, but WITHOUT ANY WARRANTY; without even the   //
00023 // implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR      //
00024 // PURPOSE.  See the GNU General Public License for more details.       //
00025 //                                                                      //
00026 // You should have received a copy of the GNU General Public License    //
00027 // along with the iLab Neuromorphic Vision C++ Toolkit; if not, write   //
00028 // to the Free Software Foundation, Inc., 59 Temple Place, Suite 330,   //
00029 // Boston, MA 02111-1307 USA.                                           //
00030 // //////////////////////////////////////////////////////////////////// //
00031 //
00032 // Primary maintainer for this file: John Shen <shenjohn@usc.edu>
00033 // $HeadURL$
00034 // $Id$
00035 //
00036 
00037 #include "Component/ModelComponent.H"
00038 #include "Component/ModelManager.H"
00039 #include "Image/ColorMap.H" 
00040 #include "Image/ColorOps.H" // for colorize() 
00041 #include "Image/CutPaste.H"
00042 #include "Image/Dims.H"
00043 #include "Image/Image.H"
00044 #include "Image/ShapeOps.H"
00045 #include "Learn/QuadTree.H"
00046 #include "Channels/RawVisualCortex.H"
00047 #include "Raster/GenericFrame.H"
00048 #include "Raster/Raster.H"
00049 
00050 #include "GUI/DebugWin.H"
00051 
00052 std::vector<byte> perm3Number(int key)
00053 {
00054   key = key % 6;
00055   std::vector<byte> ret;
00056   int rem = key % 3;
00057   ret.push_back(rem);
00058   if(key > 3) {
00059     ret.push_back((rem + 1) % 3); 
00060     ret.push_back((rem + 2) % 3); 
00061   } else {
00062     ret.push_back((rem + 2) % 3); 
00063     ret.push_back((rem + 1) % 3); 
00064   }
00065   return ret;
00066 }
00067 
00068 QuadNode::NodeState hashNodeState(int key) {
00069   key = key % (30 * 6);
00070   return QuadNode::NodeState(key % 30, perm3Number(key / 30));
00071 }
00072 
00073 int submain(const int argc, char** argv)
00074 {
00075   MYLOGVERB = LOG_INFO;
00076 
00077   ModelManager manager("Test Quad Tree");
00078   
00079   nub::ref<RawVisualCortex> vc(new RawVisualCortex(manager));
00080   manager.addSubComponent(vc);
00081   //  vc->setModelParamVal("LevelSpec",LevelSpec(2,4,3,4,4));
00082   
00083   
00084   uint nArgs = 2;
00085     if (manager.parseCommandLine((const int)argc, (const char**)argv, "<image filename>", nArgs, nArgs) == false)
00086     return 1;
00087     vc->setModelParamVal("RawVisualCortexChans",std::string("CIO"));
00088     vc->setModelParamVal("LevelSpec",LevelSpec(0,1,2,3,0),MC_RECURSE); // bug in resetting pyramids, need to check this 
00089         //vc->setModelParamVal("LevelSpec",LevelSpec(2,4,3,4,4));
00090 
00091   // fix image size
00092     Dims dims(320,240);
00093 
00094   // import image
00095   const GenericFrame input = Raster::ReadFrame(manager.getExtraArg(0).c_str());
00096   Image<PixRGB<byte> > im = rescale(input.asRgb(), dims);
00097   Image<uint> cl_im(dims, ZEROS);
00098   // test GistPixelClassifier
00099  
00100   //  GistPixelClassifier gpc;
00101   //gpc.learnInput(im, cl_im);
00102 
00103   // create Quad Tree for a given image size
00104   QuadTree myQuadTree(1,im);
00105 
00106   // // create tester Classifier based on color alone
00107   // rutz::shared_ptr<ColorPixelClassifier> cpc(new ColorPixelClassifier);
00108   // cpc->addCategory(ColorPixelClassifier::ColorCat
00109   //                  (PixRGB<byte>(140,140,100), 25)); //grass
00110   // cpc->addCategory(ColorPixelClassifier::ColorCat
00111   //                  (PixRGB<byte>(20,200,20), 25));
00112   // cpc->addCategory(ColorPixelClassifier::ColorCat
00113   //                  (PixRGB<byte>(20,20,200), 25));
00114   // cpc->addCategory(ColorPixelClassifier::ColorCat
00115   //                  (PixRGB<byte>(32,32,32), 25)); //brown
00116   // cpc->addCategory(ColorPixelClassifier::ColorCat
00117   //                  (PixRGB<byte>(255,0,0), 25)); //red
00118   // cpc->addCategory(ColorPixelClassifier::ColorCat
00119   //                  (PixRGB<byte>(0,255,0), 25)); //green
00120   // cpc->addCategory(ColorPixelClassifier::ColorCat
00121   //                  (PixRGB<byte>(0,0,255), 25)); //blue
00122   // myQuadTree.setClassifier(cpc);
00123 
00124   manager.start();
00125 
00126   // input
00127   vc->input(InputFrame::fromRgb(&im));
00128 
00129   for(uint i = 0; i < vc->numSubmaps(); i++) {
00130     Image<float> im_fl = vc->getSubmap(i); 
00131   // output
00132     inplaceNormalize(im_fl,0.0f,255.0f);
00133     LINFO("%s", toStr(vc->getSubmapName(i)).c_str());
00134     Image<PixRGB<byte> > im_out = im_fl;  
00135   }
00136 
00137   rutz::shared_ptr<QuadNode> root = myQuadTree.getRootNode();
00138   LINFO("caching classifier result");
00139   myQuadTree.cacheClassifierResult();
00140   LINFO("generating proposals");
00141   std::vector<QuadNode::NodeState> pr = myQuadTree.generateProposalsAt(root, manager.getExtraArgAs<double>(1));
00142   LINFO("done; %zu proposals made", pr.size());
00143    
00144   uint i,i_max = 0;
00145   for(i = 0; i < pr.size(); i++) {
00146     LINFO("proposal %d: %s -> %f", i, toStr(pr[i]).c_str(),pr[i].E);
00147     if(pr[i].E < pr[i_max].E) i_max = i;
00148   }
00149 
00150   if(pr.size() > 0) {
00151     LINFO("proposal with least energy %f: %s", pr[i_max].E, toStr(pr[i_max]).c_str());
00152     root->setState(pr[i_max]);
00153   }
00154   else
00155     {
00156       LINFO("no proposals match!"); return 0;
00157     }
00158 
00159   // image reporting
00160   Image<PixRGB<byte> > im_L0, im_L1, im_tot;
00161   im_L0 = root->getColorizedSegImage();
00162   im_L1 = root->getColorizedChildSegImage();
00163   
00164   im_tot = concatX(im, concatX(im_L0, im_L1));
00165   drawLine(im_tot, Point2D<int>(dims.w(), 0), Point2D<int>(dims.w(),dims.h()-1),PixRGB<byte>(255,255,255));
00166   drawLine(im_tot, Point2D<int>(2*dims.w(), 0), Point2D<int>(2*dims.w(),dims.h()-1),PixRGB<byte>(255,255,255));
00167 
00168   // output
00169   Raster::WriteRGB(im_tot,"result.png");
00170 
00171   SHOWIMG(im_tot);  
00172   //myQuadTree.printTree();
00173     //    Raster::WriteRGB(root->getColorizedSegImage(),
00174     //                sformat("seg%02d.png",i));
00175 
00176   manager.stop();
00177   return 0;
00178 }
00179 
00180 extern "C" int main(const int argc, char** argv)
00181 {
00182   try
00183     {
00184       return submain(argc, argv);
00185     }
00186   catch (...)
00187     {
00188       REPORT_CURRENT_EXCEPTION;
00189     }
00190 
00191   return 1;
00192 }
00193 
00194 // ######################################################################
00195 /* So things look consistent in everyone's emacs... */
00196 /* Local Variables: */
00197 /* indent-tabs-mode: nil */
00198 /* End: */
Generated on Sun May 8 08:40:59 2011 for iLab Neuromorphic Vision Toolkit by  doxygen 1.6.3