test-featureNPC.C

Go to the documentation of this file.
00001 /*!@file VFAT/test-featureNPC.C  Test the non-parametric classifier */
00002 
00003 // //////////////////////////////////////////////////////////////////// //
00004 // The iLab Neuromorphic Vision C++ Toolkit - Copyright (C) 2001 by the //
00005 // University of Southern California (USC) and the iLab at USC.         //
00006 // See http://iLab.usc.edu for information about this project.          //
00007 // //////////////////////////////////////////////////////////////////// //
00008 // Major portions of the iLab Neuromorphic Vision Toolkit are protected //
00009 // under the U.S. patent ``Computation of Intrinsic Perceptual Saliency //
00010 // in Visual Environments, and Applications'' by Christof Koch and      //
00011 // Laurent Itti, California Institute of Technology, 2001 (patent       //
00012 // pending; application number 09/912,225 filed July 23, 2001; see      //
00013 // http://pair.uspto.gov/cgi-bin/final/home.pl for current status).     //
00014 // //////////////////////////////////////////////////////////////////// //
00015 // This file is part of the iLab Neuromorphic Vision C++ Toolkit.       //
00016 //                                                                      //
00017 // The iLab Neuromorphic Vision C++ Toolkit is free software; you can   //
00018 // redistribute it and/or modify it under the terms of the GNU General  //
00019 // Public License as published by the Free Software Foundation; either  //
00020 // version 2 of the License, or (at your option) any later version.     //
00021 //                                                                      //
00022 // The iLab Neuromorphic Vision C++ Toolkit is distributed in the hope  //
00023 // that it will be useful, but WITHOUT ANY WARRANTY; without even the   //
00024 // implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR      //
00025 // PURPOSE.  See the GNU General Public License for more details.       //
00026 //                                                                      //
00027 // You should have received a copy of the GNU General Public License    //
00028 // along with the iLab Neuromorphic Vision C++ Toolkit; if not, write   //
00029 // to the Free Software Foundation, Inc., 59 Temple Place, Suite 330,   //
00030 // Boston, MA 02111-1307 USA.                                           //
00031 // //////////////////////////////////////////////////////////////////// //
00032 //
00033 // Primary maintainer for this file: T Nathan Mundhenk <mundhenk@usc.edu>
00034 // $HeadURL: svn://isvn.usc.edu/software/invt/trunk/saliency/src/VFAT/test-featureNPC.C $
00035 // $Id: test-featureNPC.C 6003 2005-11-29 17:22:45Z rjpeters $
00036 //
00037 
00038 // ############################################################
00039 // ############################################################
00040 // ##### ---NPclassify---
00041 // ##### non-parametric classifier:
00042 // ##### T. Nathan Mundhenk nathan@mundhenk.com
00043 // ##### Vidhya Navalpakkam - navalpak@usc.edu
00044 // ##### partners full name - email
00045 // ############################################################
00046 // ############################################################
00047 
00048 //This is the start of the execution path for the NPclassify test alg.
00049 
00050 #include "Util/Timer.H"
00051 #include "VFAT/NPclassify.H"
00052 
00053 #include <fstream>
00054 #include <iostream>
00055 
00056 //! This is the configFile name
00057 char* configFile;
00058 //! This is the configFile object
00059 readConfig configIn(25);
00060 readConfig polySet(25);
00061 //! number of items if training
00062 int itemNumber;
00063 
00064 int main(int argc, char* argv[])
00065 {
00066 
00067   std::cerr << "STARTING\n";
00068   std::cerr << "Opening config file" << argv[1] << "\n";
00069   std::ifstream inFile(argv[1],std::ios::in);
00070   std::vector<double> dataIn(7,0.0F);
00071   std::vector< std::vector<double> > vectorIn(1000,dataIn);
00072   int column = 0;
00073   int row = 0;
00074   int family = 0;
00075   bool comment = false;
00076 
00077   std::string in;
00078   std::cerr << "Parsing config file" << argv[1] << "\n";
00079   while (inFile >> in)
00080   {
00081 
00082     if(!in.compare("#")) //comment code # found
00083     {
00084       if(!comment)
00085       {
00086         comment = true;
00087       }
00088       else      //end of comment
00089       {
00090         comment = false;
00091       }
00092     }
00093     if((!comment) && in.compare("#")) //real line found
00094     {
00095       if(column == 1)
00096       {
00097         //vectorIn[row][family] = atof(in.c_str());
00098         //std::cerr << "Adding " << in << "[" << row << "]"
00099         //     << "[" << family*2 << "]\n";
00100       }
00101       if(column == 3)
00102       {
00103         vectorIn[row][family] = atof(in.c_str());
00104         //std::cerr << "Adding " << in << "[" << row << "]"
00105         //     << "[" << (family*2)+1 << "]\n";
00106       }
00107       column++;
00108       if(column == 5)
00109       {
00110         column = 0;
00111         row++;
00112       }
00113       if(!in.compare("%"))
00114       {
00115         row = 0;
00116         column = 0;
00117         family++;
00118         std::cerr << "New Family " << family << "\n";
00119       }
00120     }
00121   }
00122 
00123   // start timer
00124   Timer tim;
00125   tim.reset();
00126   uint64 t0 = tim.get();  // to measure display time
00127   // get test image
00128 
00129   if(argc > 2)
00130     itemNumber = atoi(argv[2]);
00131   else
00132     itemNumber = -666;
00133 
00134   // create operating objects
00135   configIn.openFile("NPclassify.conf");
00136   polySet.openFile("polySet.conf");
00137 
00138   NPclassify NP(configIn,polySet,true);
00139   if(argc > 3)
00140   {
00141     NP.inputCommandLineSettings(atof(argv[3]),atof(argv[4]),atof(argv[5]),
00142                                 atof(argv[6]),atoi(argv[7]),atoi(argv[8]),
00143                                 atof(argv[9]),atof(argv[10]),atof(argv[11]));
00144   }
00145 
00146   //inport data
00147 
00148   std::vector<double> feature(2,0);
00149   std::vector<long> roots;
00150   std::vector<long> parents;
00151   std::vector<double> density;
00152 
00153   NP.addSpace(vectorIn,(row-1));
00154   NP.classifySpaceNew();
00155   uint64 t1 = tim.get();
00156   t0 = t1 - t0;
00157 
00158   roots = NP.getStems();
00159   parents = NP.getParents();
00160   density = NP.getDensity();
00161 
00162   std::vector<std::vector<long> > theReturn = NP.getChildren();
00163   for(int i = 0; i < NP.getStemNumber(); i++)
00164   {
00165     if(NP.getClassSize(i) > NP.getMinClassSize())
00166     {
00167       LINFO("CLASS %d size %ld",i,NP.getClassSize(i));
00168     }
00169   }
00170   //outport classification data
00171 
00172   NP.metaClassify(itemNumber);
00173 
00174   std::ofstream outfile("feature_trian.dat",std::ios::out);
00175   std::ofstream matfile("feature_trian_mat.dat",std::ios::out);
00176   for(int i = 0; i < NP.getStemNumber(); i++)
00177   {
00178     for(int j = 0; j < NP.getClassSize(i); j++)
00179     {
00180       long item = NP.getClass(i,j);
00181       outfile << item << "\t" << i << "\t" << j << "\t"
00182               << NP.getFeature(item,0) << "\t"
00183               << NP.getFeature(item,1) << "\n";
00184       matfile << item << "\t" << i << "\n";
00185     }
00186   }
00187 
00188 
00189 }
Generated on Sun May 8 08:42:36 2011 for iLab Neuromorphic Vision Toolkit by  doxygen 1.6.3