HMaxObjRecBrain.C

00001 /*!@file NeovisionII/ColorObjRecBrain.C A mean RGB color classifier */
00002 
00003 // //////////////////////////////////////////////////////////////////// //
00004 // The iLab Neuromorphic Vision C++ Toolkit - Copyright (C) 2001 by the //
00005 // University of Southern California (USC) and the iLab at USC.         //
00006 // See http://iLab.usc.edu for information about this project.          //
00007 // //////////////////////////////////////////////////////////////////// //
00008 // Major portions of the iLab Neuromorphic Vision Toolkit are protected //
00009 // under the U.S. patent ``Computation of Intrinsic Perceptual Saliency //
00010 // in Visual Environments, and Applications'' by Christof Koch and      //
00011 // Laurent Itti, California Institute of Technology, 2001 (patent       //
00012 // pending; application number 09/912,225 filed July 23, 2001; see      //
00013 // http://pair.uspto.gov/cgi-bin/final/home.pl for current status).     //
00014 // //////////////////////////////////////////////////////////////////// //
00015 // This file is part of the iLab Neuromorphic Vision C++ Toolkit.       //
00016 //                                                                      //
00017 // The iLab Neuromorphic Vision C++ Toolkit is free software; you can   //
00018 // redistribute it and/or modify it under the terms of the GNU General  //
00019 // Public License as published by the Free Software Foundation; either  //
00020 // version 2 of the License, or (at your option) any later version.     //
00021 //                                                                      //
00022 // The iLab Neuromorphic Vision C++ Toolkit is distributed in the hope  //
00023 // that it will be useful, but WITHOUT ANY WARRANTY; without even the   //
00024 // implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR      //
00025 // PURPOSE.  See the GNU General Public License for more details.       //
00026 //                                                                      //
00027 // You should have received a copy of the GNU General Public License    //
00028 // along with the iLab Neuromorphic Vision C++ Toolkit; if not, write   //
00029 // to the Free Software Foundation, Inc., 59 Temple Place, Suite 330,   //
00030 // Boston, MA 02111-1307 USA.                                           //
00031 // //////////////////////////////////////////////////////////////////// //
00032 //
00033 // Primary maintainer for this file: 
00034 // $HeadURL: $
00035 // $Id: $
00036 //
00037 
00038 #include "Image/Image.H"
00039 #include "Image/ColorOps.H"
00040 #include "Image/Pixels.H"
00041 #include "Image/CutPaste.H"
00042 #include "Image/ShapeOps.H"
00043 #include "Image/Rectangle.H"
00044 #include "Image/MathOps.H"
00045 #include "Image/MatrixOps.H"
00046 #include "Image/Transforms.H"
00047 #include "Image/Convolutions.H"
00048 #include "nub/ref.h"
00049 #include "Util/Types.H"
00050 #include "Util/MathFunctions.H"
00051 #include "Util/log.H"
00052 #include "TestSuite/ObjRecBrain.h"
00053 
00054 
00055 #include <stdio.h>
00056 #include <vector>
00057 #include <string>
00058 #include <limits>
00059 
00060 struct ObjectDBData
00061 {
00062   char name[255];
00063   PixRGB<float> meanRGB;
00064 
00065 };
00066 
00067 struct ObjectRecData
00068 {
00069   std::string name;
00070   PixRGB<float> meanRGB;
00071 };
00072 
00073 float distanceSq(PixRGB<float>& c1, PixRGB<float>& c2)
00074 {
00075   return (squareOf((c1[0] - c2[0])) +
00076       squareOf((c1[1] - c2[1])) +
00077       squareOf((c1[2] - c2[2])));
00078 }
00079 
00080 
00081 class ColorBrain : public ObjRecBrain
00082 {
00083 
00084   public:
00085   ColorBrain(std::string dbFile) :
00086     itsObjectsDBFile(dbFile)
00087   {
00088   }
00089 
00090   ~ColorBrain()
00091   {
00092   }
00093 
00094   void preTraining()
00095   {
00096     itsFP = fopen(itsObjectsDBFile.c_str(), "wb");
00097     if (itsFP == NULL)
00098       LFATAL("Error loading data file");
00099   }
00100 
00101   void onTraining(Image<PixRGB<byte> > &img, ObjectData& objData)
00102   {
00103     ObjectDBData obj;
00104     strcpy(obj.name, objData.name.c_str());
00105     //Use the mean RGB as the feature value
00106     obj.meanRGB = meanRGB(img);
00107 
00108 
00109     fwrite(&obj, 1, sizeof(ObjectDBData), itsFP);
00110 
00111   };
00112   void postTraining()
00113   {
00114     fclose(itsFP);
00115   }
00116 
00117 
00118   void preRecognition()
00119   {
00120     itsFP = fopen(itsObjectsDBFile.c_str(), "r");
00121     if (itsFP == NULL)
00122       LFATAL("Error loading data file");
00123 
00124     itsObjects.clear();
00125     ObjectDBData obj;
00126     while( fread(&obj, 1, sizeof(ObjectDBData), itsFP) > 0)
00127     {
00128       ObjectRecData objData;
00129       objData.name = obj.name;
00130       objData.meanRGB = obj.meanRGB;
00131       itsObjects.push_back(objData);
00132     }
00133     fclose(itsFP);
00134   }
00135 
00136   ObjectData onRecognition(Image<PixRGB<byte> > &img)
00137   {
00138 
00139     ObjectData obj;
00140     if (itsObjects.size() > 0)
00141     {
00142       PixRGB<float> fv = meanRGB(img);
00143 
00144       //A simple NN search
00145       //Get the ratio of the min distance between the first nearest object
00146       //and the second different object
00147       std::string firstObj = itsObjects[0].name;
00148       float minDist1 = distanceSq(itsObjects[0].meanRGB, fv);
00149       for(uint i=1; i<itsObjects.size(); i++)
00150       {
00151         float dist = distanceSq(itsObjects[i].meanRGB, fv);
00152         if (dist < minDist1)
00153         {
00154           minDist1 = dist;
00155           firstObj = itsObjects[i].name;
00156         }
00157       }
00158 
00159       //Find the score for the next best object
00160       std::string secondObj;
00161       float minDist2 = std::numeric_limits<float>::max();
00162 
00163       for(uint i=0; i<itsObjects.size(); i++)
00164       {
00165         if (itsObjects[i].name != firstObj)
00166         {
00167           float dist = distanceSq(itsObjects[i].meanRGB, fv);
00168           if (dist < minDist2)
00169           {
00170             minDist2 = dist;
00171             secondObj = itsObjects[i].name;
00172           }
00173         }
00174       }
00175 
00176       obj.name = firstObj;
00177       obj.confidence = minDist2/(minDist1+2.22044604925031e-16); //avoid divide by 0 (eps from matlab)
00178 
00179       //LINFO("fv (%f,%f,%f) first best=%s %f : second best=%s %f confidence=%f",
00180       //    fv[0], fv[1], fv[2],
00181       //    firstObj.c_str(), minDist1,
00182       //    secondObj.c_str(), minDist2,
00183       //    obj.confidence);
00184     } else {
00185       obj.confidence = -1;
00186       obj.name = "unknown";
00187     }
00188 
00189     return obj;
00190   }
00191 
00192   void postRecognition()
00193   {
00194   }
00195 
00196   private:
00197 
00198     FILE* itsFP;
00199     std::vector<ObjectRecData> itsObjects;
00200     std::string itsObjectsDBFile;
00201 
00202 };
00203 
00204 //Create and destory the brain
00205 extern "C" ObjRecBrain* createObjRecBrain(std::string dbFile)
00206 {
00207   return new ColorBrain(dbFile);
00208 }
00209 
00210 extern "C" void destoryObjRecBrain(ObjRecBrain* brain)
00211 {
00212   delete brain;
00213 }
00214 
00215 
00216 int main(const int argc, const char **argv)
00217 {
00218   LFATAL("Use test-ObjRec");
00219   return 0;
00220 }
00221 
00222 // ######################################################################
00223 /* So things look consistent in everyone's emacs... */
00224 /* Local Variables: */
00225 /* indent-tabs-mode: nil */
00226 /* End: */
Generated on Sun May 8 08:41:02 2011 for iLab Neuromorphic Vision Toolkit by  doxygen 1.6.3