SVMClassifier.H

Go to the documentation of this file.
00001 /*!@file Learn/SVMClassifier.H Support Vector Machine Classifier module */
00002 // //////////////////////////////////////////////////////////////////// //
00003 // The iLab Neuromorphic Vision C++ Toolkit - Copyright (C) 2001 by the //
00004 // University of Southern California (USC) and the iLab at USC.         //
00005 // See http://iLab.usc.edu for information about this project.          //
00006 // //////////////////////////////////////////////////////////////////// //
00007 // Major portions of the iLab Neuromorphic Vision Toolkit are protected //
00008 // under the U.S. patent ``Computation of Intrinsic Perceptual Saliency //
00009 // in Visual Environments, and Applications'' by Christof Koch and      //
00010 // Laurent Itti, California Institute of Technology, 2001 (patent       //
00011 // pending; application number 09/912,225 filed July 23, 2001; see      //
00012 // http://pair.uspto.gov/cgi-bin/final/home.pl for current status).     //
00013 // //////////////////////////////////////////////////////////////////// //
00014 // This file is part of the iLab Neuromorphic Vision C++ Toolkit.       //
00015 //                                                                      //
00016 // The iLab Neuromorphic Vision C++ Toolkit is free software; you can   //
00017 // redistribute it and/or modify it under the terms of the GNU General  //
00018 // Public License as published by the Free Software Foundation; either  //
00019 // version 2 of the License, or (at your option) any later version.     //
00020 //                                                                      //
00021 // The iLab Neuromorphic Vision C++ Toolkit is distributed in the hope  //
00022 // that it will be useful, but WITHOUT ANY WARRANTY; without even the   //
00023 // implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR      //
00024 // PURPOSE.  See the GNU General Public License for more details.       //
00025 //                                                                      //
00026 // You should have received a copy of the GNU General Public License    //
00027 // along with the iLab Neuromorphic Vision C++ Toolkit; if not, write   //
00028 // to the Free Software Foundation, Inc., 59 Temple Place, Suite 330,   //
00029 // Boston, MA 02111-1307 USA.                                           //
00030 // //////////////////////////////////////////////////////////////////// //
00031 //
00032 // Primary maintainer for this file: Laurent Itti <itti@usc.edu>
00033 // $HeadURL: svn://isvn.usc.edu/software/invt/trunk/saliency/src/Learn/SVMClassifier.H $
00034 // $Id: SVMClassifier.H 14581 2011-03-08 07:18:09Z dparks $
00035 //
00036 
00037 #ifndef SVMCLASSIFIER_H_DEFINED
00038 #define SVMCLASSIFIER_H_DEFINED
00039 
00040 #include <map>
00041 
00042 #include "Component/ModelComponent.H"
00043 #include "Component/ModelParam.H"
00044 #include "Component/OptionManager.H"
00045 #include "Image/Image.H"
00046 
00047 #include "svm.h"
00048 
00049 namespace nub { template <class T> class ref; }
00050 
00051 // ######################################################################
00052 //! SVM Classifier Class
00053 class SVMClassifier
00054 {
00055 
00056 public:
00057   //! Constructor
00058   SVMClassifier(float gamma=0.00078125, int C=32);
00059 
00060   //! Destructor
00061   ~SVMClassifier();
00062 
00063   //! Train
00064   void train(std::string outputFileName, int id, std::vector<float> &feature);
00065   void train(std::string outputFileName, int id, float *&feature, unsigned int fdim);
00066   void train(std::string outputFilename, int id, float **&feature, unsigned int fdim1, unsigned int fdim2);
00067 
00068   //! Train the SVM using the data in trainingData, with the ground truth data in dataClasses
00069   //    trainingData is a matrix which contains column vectors of data points, where each row represents
00070   //      a dimension of your data
00071   //    dataClasses is a vector which defines the class type of each data point in the trainingData
00072   //     (Your dataClasses vector should have as many elements as there are columns in your trainingData)
00073   void train(Image<double> trainingData, std::vector<double> dataClasses);
00074   void train(std::vector<std::vector<float> > trainingDta, std::vector<float> dataClasses);
00075 
00076   //! Predict the class of a data point
00077   //    dataPoint should be a column vector with each row representing a dimension of the data
00078   std::map<int,double> predictPDF(const svm_node* dataPointNodes);
00079   std::map<int,double> predictPDF(std::vector<float> &feature);
00080 
00081   //! Predict
00082   double predict(Image<double> dataPoint, double *probability=NULL);
00083   double predict(std::vector<float> &feature, double *probability=NULL);
00084   double predict(float * &feature, unsigned int fdim, double *probability=NULL);
00085   double predict(float **&feature, unsigned int fdim1, unsigned int fdim2, double *probability=NULL);
00086 
00087   void readModel(std::string modelFileName); //! Read model file into memory
00088   void writeModel(std::string modelFileName); //! Write model file into memory
00089   void readRange(std::string rangeFileName); //! Read a range file to scale the feature vector, if needed
00090   float rescaleValue(float value, unsigned int index); //! If range is enabled, rescale the value to
00091 
00092 protected:
00093   int _getBestLabel(std::map<int,double> pdf, double *probability);
00094   double _predict(struct svm_node *node, unsigned int fdim, double * probability);
00095   void _train(svm_problem& trainingProblem);
00096 
00097   struct svm_parameter itsSVMParams;
00098   struct svm_model*    itsSVMModel;
00099   bool                 itsSVMRangeEnabled;
00100   std::vector<double>  itsSVMFeatureRangeMax;
00101   std::vector<double>  itsSVMFeatureRangeMin;
00102   double               itsSVMFeatureRangeUpper;
00103   double               itsSVMFeatureRangeLower;
00104 };
00105 
00106 #endif
00107 
00108 
00109 // ######################################################################
00110 /* So things look consistent in everyone's emacs... */
00111 /* Local Variables: */
00112 /* indent-tabs-mode: nil */
00113 /* End: */
00114 
Generated on Sun May 8 08:40:59 2011 for iLab Neuromorphic Vision Toolkit by  doxygen 1.6.3