00001 /*!@file CUDA/CudaColorOps.C C++ wrapper for CUDA Color operations */ 00002 00003 // //////////////////////////////////////////////////////////////////// // 00004 // The iLab Neuromorphic Vision C++ Toolkit - Copyright (C) 2000-2005 // 00005 // by the University of Southern California (USC) and the iLab at USC. // 00006 // See http://iLab.usc.edu for information about this project. // 00007 // //////////////////////////////////////////////////////////////////// // 00008 // Major portions of the iLab Neuromorphic Vision Toolkit are protected // 00009 // under the U.S. patent ``Computation of Intrinsic Perceptual Saliency // 00010 // in Visual Environments, and Applications'' by Christof Koch and // 00011 // Laurent Itti, California Institute of Technology, 2001 (patent // 00012 // pending; application number 09/912,225 filed July 23, 2001; see // 00013 // http://pair.uspto.gov/cgi-bin/final/home.pl for current status). // 00014 // //////////////////////////////////////////////////////////////////// // 00015 // This file is part of the iLab Neuromorphic Vision C++ Toolkit. // 00016 // // 00017 // The iLab Neuromorphic Vision C++ Toolkit is free software; you can // 00018 // redistribute it and/or modify it under the terms of the GNU General // 00019 // Public License as published by the Free Software Foundation; either // 00020 // version 2 of the License, or (at your option) any later version. // 00021 // // 00022 // The iLab Neuromorphic Vision C++ Toolkit is distributed in the hope // 00023 // that it will be useful, but WITHOUT ANY WARRANTY; without even the // 00024 // implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR // 00025 // PURPOSE. See the GNU General Public License for more details. // 00026 // // 00027 // You should have received a copy of the GNU General Public License // 00028 // along with the iLab Neuromorphic Vision C++ Toolkit; if not, write // 00029 // to the Free Software Foundation, Inc., 59 Temple Place, Suite 330, // 00030 // Boston, MA 02111-1307 USA. // 00031 // //////////////////////////////////////////////////////////////////// // 00032 // 00033 // Primary maintainer for this file: 00034 // $HeadURL: svn://isvn.usc.edu/software/invt/trunk/saliency/src/CUDA/CudaColorOps.C $ 00035 // $Id: CudaColorOps.C 12962 2010-03-06 02:13:53Z irock $ 00036 // 00037 00038 #include "CUDA/CudaImage.H" 00039 #include "Util/Assert.H" 00040 #include "CUDA/cudadefs.h" 00041 #include "CudaColorOps.H" 00042 #include "CudaDevices.H" 00043 #include "wrap_c_cuda.h" 00044 00045 00046 void cudaGetRGBY(const CudaImage<PixRGB<float> >& src, CudaImage<float>& rg, CudaImage<float>& by, 00047 const float thresh, const float min_range, const float max_range) 00048 { 00049 ASSERT(src.initialized()); 00050 ASSERT(src.getMemoryPolicy() != HOST_MEMORY); 00051 const MemoryPolicy mp = src.getMemoryPolicy(); 00052 const int dev = src.getMemoryDevice(); 00053 rg = CudaImage<float>(src.getDims(), NO_INIT, mp, dev); 00054 by = CudaImage<float>(src.getDims(), NO_INIT, mp, dev); 00055 const Dims tile = CudaDevices::getDeviceTileSize(dev); 00056 cuda_c_getRGBY((float3_t *)src.getCudaArrayPtr(),rg.getCudaArrayPtr(),by.getCudaArrayPtr(),thresh, 00057 min_range,max_range,src.getWidth(),src.getHeight(),tile.w(),tile.h()); 00058 } 00059 00060 CudaImage<PixRGB<float> > cudaToRGB(const CudaImage<float>& src) 00061 { 00062 00063 ASSERT(src.initialized()); 00064 ASSERT(src.getMemoryPolicy() != HOST_MEMORY); 00065 const MemoryPolicy mp = src.getMemoryPolicy(); 00066 const int dev = src.getMemoryDevice(); 00067 CudaImage<PixRGB<float> > dst = CudaImage<PixRGB<float> >(src.getDims(), NO_INIT, mp, dev); 00068 00069 const Dims tile = CudaDevices::getDeviceTileSize1D(dev); 00070 cuda_c_toRGB((float3_t *)dst.getCudaArrayPtr(),src.getCudaArrayPtr(),src.size(),tile.sz()); 00071 return dst; 00072 } 00073 00074 00075 void cudaGetComponents(const CudaImage<PixRGB<float> >& src, CudaImage<float>& red, CudaImage<float>& green, CudaImage<float>& blue) 00076 { 00077 // Ensure that the data is valid 00078 ASSERT(src.initialized()); 00079 // Ensure that we are on a CUDA device 00080 ASSERT(src.getMemoryPolicy() != HOST_MEMORY); 00081 00082 const int dev = src.getMemoryDevice(); 00083 // Set up output image memory 00084 red = CudaImage<float>(src.getDims(), NO_INIT, src.getMemoryPolicy(), dev); 00085 green = CudaImage<float>(src.getDims(), NO_INIT, src.getMemoryPolicy(), dev); 00086 blue = CudaImage<float>(src.getDims(), NO_INIT, src.getMemoryPolicy(), dev); 00087 00088 const Dims tile = CudaDevices::getDeviceTileSize(dev); 00089 // Call CUDA implementation 00090 cuda_c_getComponents((float3_t *)src.getCudaArrayPtr(), red.getCudaArrayPtr(), green.getCudaArrayPtr(), blue.getCudaArrayPtr(), 00091 src.getWidth(), src.getHeight(),tile.w(),tile.h()); 00092 } 00093 00094 // Our CUDA library only supports float implementation, no use pretending to support others with template style 00095 CudaImage<float> cudaLuminance(const CudaImage<PixRGB<float> >& src) 00096 { 00097 // Ensure that the data is valid 00098 ASSERT(src.initialized()); 00099 // Ensure that we are on a CUDA device 00100 ASSERT(src.getMemoryPolicy() != HOST_MEMORY); 00101 00102 const int dev = src.getMemoryDevice(); 00103 // Output is the same size as the input for this filter 00104 CudaImage<float> result(src.getDims(), NO_INIT, src.getMemoryPolicy(), dev); 00105 00106 const Dims tile = CudaDevices::getDeviceTileSize(dev); 00107 // Now call the CUDA implementation 00108 cuda_c_luminance((float3_t *)src.getCudaArrayPtr(),result.getCudaArrayPtr(),result.getWidth(),result.getHeight(), 00109 tile.w(),tile.h()); 00110 return result; 00111 } 00112 00113 00114 // Our CUDA library only supports float implementation, no use pretending to support others with template style 00115 CudaImage<float> cudaLuminanceNTSC(const CudaImage<PixRGB<float> >& src) 00116 { 00117 // Ensure that the data is valid 00118 ASSERT(src.initialized()); 00119 // Ensure that we are on a CUDA device 00120 ASSERT(src.getMemoryPolicy() != HOST_MEMORY); 00121 00122 const int dev = src.getMemoryDevice(); 00123 // Output is the same size as the input for this filter 00124 CudaImage<float> result(src.getDims(), NO_INIT, src.getMemoryPolicy(), dev); 00125 00126 const Dims tile = CudaDevices::getDeviceTileSize(dev); 00127 // Now call the CUDA implementation 00128 cuda_c_luminanceNTSC((float3_t *)src.getCudaArrayPtr(),result.getCudaArrayPtr(),result.getWidth(),result.getHeight(), 00129 tile.w(),tile.h()); 00130 return result; 00131 }