00001 /*!@file Robots2/Beobot2/Navigation/FOE_Navigation/FoeDetector.H 00002 detects an FOE from the input image sequence */ 00003 // //////////////////////////////////////////////////////////////////// // 00004 // The iLab Neuromorphic Vision C++ Toolkit - Copyright (C) 2001 by the // 00005 // University of Southern California (USC) and the iLab at USC. // 00006 // See http://iLab.usc.edu for information about this project. // 00007 // //////////////////////////////////////////////////////////////////// // 00008 // Major portions of the iLab Neuromorphic Vision Toolkit are protected // 00009 // under the U.S. patent ``Computation of Intrinsic Perceptual Saliency // 00010 // in Visual Environments, and Applications'' by Christof Koch and // 00011 // Laurent Itti, California Institute of Technology, 2001 (patent // 00012 // pending; application number 09/912,225 filed July 23, 2001; see // 00013 // http://pair.uspto.gov/cgi-bin/final/home.pl for current status). // 00014 // //////////////////////////////////////////////////////////////////// // 00015 // This file is part of the iLab Neuromorphic Vision C++ Toolkit. // 00016 // // 00017 // The iLab Neuromorphic Vision C++ Toolkit is free software; you can // 00018 // redistribute it and/or modify it under the terms of the GNU General // 00019 // Public License as published by the Free Software Foundation; either // 00020 // version 2 of the License, or (at your option) any later version. // 00021 // // 00022 // The iLab Neuromorphic Vision C++ Toolkit is distributed in the hope // 00023 // that it will be useful, but WITHOUT ANY WARRANTY; without even the // 00024 // implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR // 00025 // PURPOSE. See the GNU General Public License for more details. // 00026 // // 00027 // You should have received a copy of the GNU General Public License // 00028 // along with the iLab Neuromorphic Vision C++ Toolkit; if not, write // 00029 // to the Free Software Foundation, Inc., 59 Temple Place, Suite 330, // 00030 // Boston, MA 02111-1307 USA. // 00031 // //////////////////////////////////////////////////////////////////// // 00032 // 00033 // Primary maintainer for this file: Christian Siagian <siagian@usc.edu> 00034 // $HeadURL: svn://ilab.usc.edu/trunk/saliency/src/Robots/Beobot2/Navigation/FOE_Navigation/FoeDetector.H 00035 // $Id: $ 00036 // 00037 00038 #include "Component/ModelComponent.H" 00039 #include "Component/ModelParam.H" 00040 00041 #include "Image/Image.H" 00042 #include "Image/Layout.H" 00043 00044 #include "Robots/Beobot2/Navigation/FOE_Navigation/SpatioTemporalEnergy.H" 00045 #include "Robots/Beobot2/Navigation/FOE_Navigation/MiddleTemporal.H" 00046 #include "Robots/Beobot2/Navigation/FOE_Navigation/MotionOps.H" 00047 #include "Raster/Raster.H" 00048 00049 #ifndef ROBOTS_BEOBOT2_NAVIGATION_FOENAVIGATION_FOEDETECTOR_H 00050 #define ROBOTS_BEOBOT2_NAVIGATION_FOENAVIGATION_FOEDETECTOR_H 00051 00052 #define FOE_METHOD_TEMPLATE 10000 00053 #define FOE_METHOD_AVERAGE 10001 00054 00055 class FoeDetector: public ModelComponent 00056 { 00057 public: 00058 00059 FoeDetector(OptionManager& mgr, 00060 const std::string& descrName = "FoeDetector", 00061 const std::string& tagName = "FoeDetector"); 00062 00063 void reset(uint numPyrLevel, uint numDirs, uint numSpeeds); 00064 00065 ~FoeDetector(); 00066 00067 //! various ways to get an estimate of focus of expansion 00068 //! point or the probability map 00069 //! Note: if new features/image is inputted 00070 //! FOE will be recomputed using those features 00071 //! otherwise it will return the current information 00072 //! without computation 00073 00074 //! compute and return FOE location given an input image 00075 Point2D<int> getFoe(Image<byte> lum, 00076 uint method = FOE_METHOD_TEMPLATE, 00077 bool tempFilter = true); 00078 00079 //! compute and return FOE map given an input image 00080 Image<float> getFoeMap(Image<byte> lum, 00081 uint method = FOE_METHOD_TEMPLATE, 00082 bool tempFilter = true); 00083 00084 //! compute and return FOE location given a set of correspondences 00085 Point2D<int> getFoe 00086 ( rutz::shared_ptr<OpticalFlow> flow, 00087 uint method = FOE_METHOD_TEMPLATE, 00088 bool tempFilter = true); 00089 00090 //! compute and return FOE location given a set of correspondences 00091 Image<float> getFoeMap 00092 ( rutz::shared_ptr<OpticalFlow> flow, 00093 uint method = FOE_METHOD_TEMPLATE, 00094 bool tempFilter = true); 00095 00096 //! compute and return FOE location given MT features 00097 //! use MiddleTemporal.C & .H to compute it 00098 Point2D<int> getFoe 00099 ( std::vector <Image<float> > mtFeatures, 00100 std::vector <Image<float> > mtOptimalShift, 00101 uint method = FOE_METHOD_TEMPLATE, 00102 bool tempFilter = true); 00103 00104 //! compute and return FOE map given MT features 00105 //! use MiddleTemporal.C & .H to compute it 00106 Image<float> getFoeMap 00107 ( std::vector <Image<float> > mtFeatures, 00108 std::vector <Image<float> > mtOptimalShift, 00109 uint method = FOE_METHOD_TEMPLATE, 00110 bool tempFilter = true); 00111 00112 //! return the current information without computation 00113 Point2D<int> getFoe(); 00114 Image<float> getFoeMap(); 00115 00116 //! hard-code input observer motion 00117 void setObserverRotation(uint dir, float speed); 00118 void setObserverRotation(float di, float dj); 00119 00120 //! return displayable result of FOE computation 00121 Layout<byte> getMTfeaturesDisplay(Image<byte> image); 00122 00123 private: 00124 00125 //! internal functions for different types of FOE computation 00126 Point2D<int> getFoeTemplate(Image<byte> lum); 00127 Point2D<int> getFoeAvg(Image<byte> lum); 00128 00129 //! temporally filter the location of the FOE 00130 //! as images are inputted 00131 Point2D<int> temporalFilterFoeComputation(); 00132 00133 //! reset direction weights for FOE calculation 00134 //! at the MST level 00135 void resetDirectionWeights(uint width, uint height); 00136 00137 //! compute the visual cortex features related to motion 00138 //! this is if the input is in series of image 00139 //! if input is MT features or correspondences 00140 //! this step is skipped 00141 void computeV1features(); 00142 00143 //! detect whether observer is stationary 00144 //! FIXXX_NOTE: need some work 00145 float detectObserverStationarity(); 00146 00147 //! detect observer rotation correct for FOE templates 00148 //! FIXXX_NOTE: need some work 00149 void detectObserverRotation(); 00150 float maxMean(Image<float> image); 00151 00152 //! correct FOE templates to account for observer rotation 00153 //! FIXXX_NOTE: need some work 00154 void correctForObserverRotation(); 00155 00156 //! compute the Focus of Expansion from the MT features 00157 //! using Perrone 1992 templates method 00158 Point2D<int> computeFoeTemplate(); 00159 float computeFoeTemplateValue(uint foeI, uint foeJ); 00160 Point2D<int> computeFoeTemplate(rutz::shared_ptr<OpticalFlow> flow); 00161 float computeFoeTemplateValue 00162 (uint foeI, uint foeJ, rutz::shared_ptr<OpticalFlow> flow); 00163 00164 //! return direction weight 00165 float getDirectionWeight 00166 (Point2D<float> pt, Point2D<float> foe, float length, float mangle); 00167 float getDirectionWeight2(uint quad, uint dir); 00168 00169 //! compute the Focus of Expansion from the MT features 00170 //! using Bonn 1994 vertical and horizontal averaging method 00171 Point2D<int> computeFoeAverage(); 00172 Point2D<int> computeFoeAverage(rutz::shared_ptr<OpticalFlow> flow); 00173 00174 //! printing/displaying procedures 00175 //! for debugging 00176 void print(Image<float> img, 00177 uint si, uint ei, uint sj, uint ej, bool stop); 00178 void display(Image<float> img, std::string info); 00179 void display(ImageSet<float> imgs, std::string info); 00180 00181 00182 00183 //! the various directional pyrbuilders 00184 std::vector<std::vector 00185 <rutz::shared_ptr<SpatioTemporalEnergyPyrBuilder<float> > > > 00186 itsSpatioTemporalPyrBuilders; 00187 00188 //! its Medial Temporal module 00189 rutz::shared_ptr<MiddleTemporal> itsMT; 00190 00191 std::vector<std::vector<std::vector<Image<float> > > > itsDirWeights; 00192 00193 uint itsNumPyrLevels; 00194 uint itsNumDirs; 00195 uint itsNumSpeeds; 00196 //uint itsNumDFrames; // 1 pix in between, 2, 4 00197 00198 //! current image holder 00199 Image<byte> itsCurrentImage; 00200 00201 //! raw motion energy for each direction 00202 std::vector<std::vector<ImageSet<float> > > itsRawSpatioTemporalEnergy; 00203 std::vector<ImageSet<float> > itsSpatioTemporalEnergy; 00204 //std::vector<ImageSet<float> > itsSpatioTemporalEnergyOptimalShift; 00205 00206 //! filtered: collapsed to the number of directions 00207 //! this already includes: 00208 //! lateral inhibition 00209 //! center surround opponencies 00210 std::vector <Image<float> > itsMTfeatures; 00211 std::vector <Image<float> > itsMToptimalShift; 00212 00213 //! map of likelihood 00214 //! that a coordinate location is the focus of expansion 00215 Image<float> itsFoeMap; 00216 std::vector<Image<float> > itsRecentFoeMaps; 00217 int itsCurrentFoeMapIndex; 00218 00219 //! most likely focus of expansion location 00220 Point2D<int> itsFoe; 00221 00222 //! estimated current observer motion 00223 //! can (or have been) be used to adjust FOE 00224 uint itsCurrentRotMotionDir; 00225 float itsCurrentRotMotionSpeed; 00226 float itsCurrentRotMotionDi; 00227 float itsCurrentRotMotionDj; 00228 00229 //! debugging window 00230 rutz::shared_ptr<XWinManaged> itsWin; 00231 }; 00232 #endif 00233 00234 // ###################################################################### 00235 /* So things look consistent in everyone's emacs... */ 00236 /* Local Variables: */ 00237 /* indent-tabs-mode: nil */ 00238 /* End: */