00001 /*!@file VFAT/NPclassify-test.C Test the non-parametric classifier */ 00002 00003 // //////////////////////////////////////////////////////////////////// // 00004 // The iLab Neuromorphic Vision C++ Toolkit - Copyright (C) 2001 by the // 00005 // University of Southern California (USC) and the iLab at USC. // 00006 // See http://iLab.usc.edu for information about this project. // 00007 // //////////////////////////////////////////////////////////////////// // 00008 // Major portions of the iLab Neuromorphic Vision Toolkit are protected // 00009 // under the U.S. patent ``Computation of Intrinsic Perceptual Saliency // 00010 // in Visual Environments, and Applications'' by Christof Koch and // 00011 // Laurent Itti, California Institute of Technology, 2001 (patent // 00012 // pending; application number 09/912,225 filed July 23, 2001; see // 00013 // http://pair.uspto.gov/cgi-bin/final/home.pl for current status). // 00014 // //////////////////////////////////////////////////////////////////// // 00015 // This file is part of the iLab Neuromorphic Vision C++ Toolkit. // 00016 // // 00017 // The iLab Neuromorphic Vision C++ Toolkit is free software; you can // 00018 // redistribute it and/or modify it under the terms of the GNU General // 00019 // Public License as published by the Free Software Foundation; either // 00020 // version 2 of the License, or (at your option) any later version. // 00021 // // 00022 // The iLab Neuromorphic Vision C++ Toolkit is distributed in the hope // 00023 // that it will be useful, but WITHOUT ANY WARRANTY; without even the // 00024 // implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR // 00025 // PURPOSE. See the GNU General Public License for more details. // 00026 // // 00027 // You should have received a copy of the GNU General Public License // 00028 // along with the iLab Neuromorphic Vision C++ Toolkit; if not, write // 00029 // to the Free Software Foundation, Inc., 59 Temple Place, Suite 330, // 00030 // Boston, MA 02111-1307 USA. // 00031 // //////////////////////////////////////////////////////////////////// // 00032 // 00033 // Primary maintainer for this file: T Nathan Mundhenk <mundhenk@usc.edu> 00034 // $HeadURL: svn://isvn.usc.edu/software/invt/trunk/saliency/src/VFAT/NPclassify-test.C $ 00035 // $Id: NPclassify-test.C 6593 2006-05-16 20:33:52Z rjpeters $ 00036 // 00037 00038 // ############################################################ 00039 // ############################################################ 00040 // ##### ---NPclassify--- 00041 // ##### non-parametric classifier: 00042 // ##### T. Nathan Mundhenk nathan@mundhenk.com 00043 // ##### Vidhya Navalpakkam - navalpak@usc.edu 00044 // ##### partners full name - email 00045 // ############################################################ 00046 // ############################################################ 00047 00048 //This is the start of the execution path for the NPclassify test alg. 00049 #include "Util/log.H" 00050 #include "Util/readConfig.H" 00051 #include "VFAT/NPclassify.H" 00052 #include "Raster/Raster.H" 00053 #include "Image/All.H" 00054 #include <stdlib.h> 00055 #include <sys/types.h> 00056 #include <time.h> 00057 00058 //! This is the configFile name 00059 char* configFile; 00060 //! This is the configFile object 00061 readConfig configIn(25); 00062 00063 00064 int main(int argc, char* argv[]) 00065 { 00066 LFATAL("this program doesn't compile at the moment"); 00067 #if 0 00068 // start timer 00069 time_t t1,t2; 00070 (void) time(&t1); 00071 00072 // get test image 00073 Image<byte> input = Raster::ReadGray(PGM,argv[1]); 00074 Image<float> finput = input; 00075 00076 // create operating objects 00077 readConfig.openFile("NPclassify.conf"); 00078 NPclassify(readConfig); 00079 std::vector<long> feature(2,0); 00080 std::vector<std::vector<long> > features(50,feature); 00081 long featureCount = 0; 00082 00083 // convert test image to vector format 00084 for(int x = 0; x < finput.getWidth(); x++) 00085 { 00086 for(int y = 0; y < finput.getHeight();y++) 00087 { 00088 if(finput.getVal() < 128.0F) 00089 { 00090 // resize vector if needed 00091 if(features.size() >= featureCount) 00092 features.resize((featureCount+50)); 00093 // insert x and y into vector 00094 features[featureCount][0] = x; 00095 features[featureCount][1] = y; 00096 } 00097 } 00098 } 00099 00100 NPclassify.addSpace(features); 00101 NPclassify.classifySpaceNew(); 00102 #endif 00103 } 00104 00105 00106 00107 00108 00109 // ###################################################################### 00110 /* So things look consistent in everyone's emacs... */ 00111 /* Local Variables: */ 00112 /* indent-tabs-mode: nil */ 00113 /* End: */