ShapeOps.H

Go to the documentation of this file.
00001 /*!@file Image/ShapeOps.H Shape operations on Image
00002  */
00003 
00004 // //////////////////////////////////////////////////////////////////// //
00005 // The iLab Neuromorphic Vision C++ Toolkit - Copyright (C) 2001 by the //
00006 // University of Southern California (USC) and the iLab at USC.         //
00007 // See http://iLab.usc.edu for information about this project.          //
00008 // //////////////////////////////////////////////////////////////////// //
00009 // Major portions of the iLab Neuromorphic Vision Toolkit are protected //
00010 // under the U.S. patent ``Computation of Intrinsic Perceptual Saliency //
00011 // in Visual Environments, and Applications'' by Christof Koch and      //
00012 // Laurent Itti, California Institute of Technology, 2001 (patent       //
00013 // pending; application number 09/912,225 filed July 23, 2001; see      //
00014 // http://pair.uspto.gov/cgi-bin/final/home.pl for current status).     //
00015 // //////////////////////////////////////////////////////////////////// //
00016 // This file is part of the iLab Neuromorphic Vision C++ Toolkit.       //
00017 //                                                                      //
00018 // The iLab Neuromorphic Vision C++ Toolkit is free software; you can   //
00019 // redistribute it and/or modify it under the terms of the GNU General  //
00020 // Public License as published by the Free Software Foundation; either  //
00021 // version 2 of the License, or (at your option) any later version.     //
00022 //                                                                      //
00023 // The iLab Neuromorphic Vision C++ Toolkit is distributed in the hope  //
00024 // that it will be useful, but WITHOUT ANY WARRANTY; without even the   //
00025 // implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR      //
00026 // PURPOSE.  See the GNU General Public License for more details.       //
00027 //                                                                      //
00028 // You should have received a copy of the GNU General Public License    //
00029 // along with the iLab Neuromorphic Vision C++ Toolkit; if not, write   //
00030 // to the Free Software Foundation, Inc., 59 Temple Place, Suite 330,   //
00031 // Boston, MA 02111-1307 USA.                                           //
00032 // //////////////////////////////////////////////////////////////////// //
00033 //
00034 // Primary maintainer for this file: Rob Peters <rjpeters@klab.caltech.edu>
00035 // $HeadURL: svn://isvn.usc.edu/software/invt/trunk/saliency/src/Image/ShapeOps.H $
00036 // $Id: ShapeOps.H 9412 2008-03-10 23:10:15Z farhan $
00037 //
00038 
00039 #ifndef IMAGE_SHAPEOPS_H_DEFINED
00040 #define IMAGE_SHAPEOPS_H_DEFINED
00041 
00042 #include "Util/Assert.H"
00043 #include "Util/Types.H"
00044 
00045 #include <string>
00046 
00047 class Dims;
00048 template <class T> class Point2D;
00049 class Rectangle;
00050 
00051 template <class T> class Image;
00052 template <class T> class PixRGB;
00053 
00054 //! Compute quick and dirty scaling down of array.
00055 template <class T_or_RGB>
00056 Image<T_or_RGB> quickLocalAvg(const Image<T_or_RGB>& array, const int scale);
00057 
00058 //! Compute local average of each 2x2 block and decimate by 2x2
00059 template <class T_or_RGB>
00060 Image<T_or_RGB> quickLocalAvg2x2(const Image<T_or_RGB>& array);
00061 
00062 //! Compute quick and dirty scaling down of array.
00063 template <class T_or_RGB>
00064 Image<T_or_RGB> quickLocalMax(const Image<T_or_RGB>& array, const int scale);
00065 
00066 //! Compute quick and dirty scaling down of array.
00067 template <class T_or_RGB>
00068 Image<T_or_RGB> quickLocalMin(const Image<T_or_RGB>& array, const int scale);
00069 
00070 //! Dumb interpolation.
00071 template <class T_or_RGB>
00072 Image<T_or_RGB> quickInterpolate(const Image<T_or_RGB>& src,
00073                                  const int sfactor);
00074 
00075 //! Double image size, using linear interpolation
00076 /*! This function doubles the size of an image in the x and y
00077   directions. It differs from intXY() in that some interpolation will
00078   be made to create the new pixels, instead of duplication or
00079   insersion of zeros. It also differs slightly from using rescale() in
00080   the weights used for the interpolation. Specifically, we obtain:
00081 
00082   <PRE>
00083   ORIGa  NEW1  ORIGb  ...
00084   NEW2   NEW3  NEW4   ...
00085   ORIGc  NEW5  ORIGd  ...
00086   ...    ...   ...    ...
00087 
00088   where ORIGx are the pixels from the original image, and
00089 
00090   NEW1 = (ORIGa + ORIGb) / 2
00091   NEW2 = (ORIGa + ORIGc) / 2
00092   NEW3 = (ORIGa + ORIGb + ORIGc + ORIGd) / 4
00093   NEW4 = (ORIGb + ORIGd) / 2
00094   NEW5 = (ORIGc + ORIGd) / 2
00095   </PRE>
00096 
00097   Note that for the last row and column we assume something that is
00098   half-way between a duplication and a black border. */
00099 template <class T_or_RGB>
00100 Image<T_or_RGB> interpolate(const Image<T_or_RGB>& src);
00101 
00102 //! Scale to new width & height using bilinear interpolation.
00103 template <class T_or_RGB>
00104 Image<T_or_RGB> rescaleBilinear(const Image<T_or_RGB>& src, const Dims& dims);
00105 
00106 //! Scale to new width & height using bilinear interpolation.
00107 template <class T_or_RGB>
00108 Image<T_or_RGB> rescaleBilinear(const Image<T_or_RGB>& src, int width, int height);
00109 
00110 //! Scale to new width & height with no interpolation.
00111 template <class T_or_RGB>
00112 Image<T_or_RGB> rescaleNI(const Image<T_or_RGB>& src, const Dims& dims);
00113 
00114 //! Scale to new width & height with no interpolation.
00115 template <class T_or_RGB>
00116 Image<T_or_RGB> rescaleNI(const Image<T_or_RGB>& src, int width, int height);
00117 
00118 /// Different types of image rescaling functions
00119 enum RescaleType
00120 {
00121   RESCALE_SIMPLE_NOINTERP,
00122   RESCALE_SIMPLE_BILINEAR,
00123   RESCALE_FILTER_BOX,
00124   RESCALE_FILTER_TRIANGLE,
00125   RESCALE_FILTER_BELL,
00126   RESCALE_FILTER_BSPLINE,
00127   RESCALE_FILTER_HERMITE,
00128   RESCALE_FILTER_LANCZOS3,
00129   RESCALE_FILTER_MITCHELL
00130 };
00131 
00132 /// Convert a character mnemonic into a RescaleType;
00133 RescaleType getRescaleTypeFromChar(char ftype);
00134 
00135 /// Convert RescaleType -> string
00136 std::string convertToString(RescaleType ftype);
00137 
00138 /// Convert string -> RescaleType
00139 void convertFromString(const std::string& str1, RescaleType& ftype);
00140 
00141 /// Generic image rescaling function with runtime-selectable rescaling algorithm
00142 template <class T_or_RGB>
00143 Image<T_or_RGB> rescale(const Image<T_or_RGB>& src, const Dims& newdims,
00144                         RescaleType ftype = RESCALE_SIMPLE_BILINEAR);
00145 
00146 /// Generic image rescaling function with runtime-selectable rescaling algorithm
00147 template <class T_or_RGB>
00148 Image<T_or_RGB> rescale(const Image<T_or_RGB>& src,
00149                         const int width, const int height,
00150                         RescaleType ftype = RESCALE_SIMPLE_BILINEAR);
00151 
00152 
00153 //! Scale to new width & height
00154 /*! Calls rescale() or rescaleNI() depending on value of interp */
00155 template <class T_or_RGB>
00156 Image<T_or_RGB> rescaleOpt(const Image<T_or_RGB>& src,
00157                         const Dims& dims, const bool interp);
00158 
00159 //! Scale to new width & height
00160 /*! Calls rescale() or rescaleNI() depending on value of interp */
00161 template <class T_or_RGB>
00162 Image<T_or_RGB> rescaleOpt(const Image<T_or_RGB>& src, int width, int height,
00163                         const bool interp);
00164 
00165 //! downscale an image using fancy widgets like anti-aliasing, resampling
00166 /*! Adapted from PhotoPNMtools by Boris Van Schooten boris@13thmonkey.org
00167  */
00168 template <class T>
00169 Image<PixRGB<T> > downscaleFancy(const Image<PixRGB<T> >& src,
00170                                  int width, int height, int weighting_slope,
00171                                  bool no_weight_black);
00172 
00173 //! Downsize using alternating lowpass/decimate operations.
00174 /*! The width used internally in the lowpass filters is given by
00175     filterWidth (default = 9). */
00176 template <class T>
00177 Image<T> downSize(const Image<T>& src, const Dims& dims,
00178                   const int filterWidth = 9);
00179 
00180 //! Downsize using alternating lowpass/decimate operations.
00181 /*! The width used internally in the lowpass filters is given by
00182     filterWidth (default = 9). */
00183 template <class T>
00184 Image<T> downSize(const Image<T>& src, const int width, const int height,
00185                   const int filterWidth = 9);
00186 
00187 //! Like downSize(), except image proportions don't have to match exactly.
00188 /*! This operation applies alternating lowpass/decimate as long as the
00189     result is larger than the desired size, and then finally does a
00190     bilinear interpolation to the final size. If the desired size is
00191     actually larger than the input size, then the image is simply
00192     upscaled with a bilinear interpolation. The advantage of using
00193     this operation over just using rescale() directly is that
00194     rescale() may introduce aliasing if an image is being downsized by
00195     several ocatves; successive lowpass/decimate operations ensure
00196     that total image energy is preserved. */
00197 Image<float> downSizeClean(const Image<float>& src, const Dims& new_dims,
00198                            const int filterWidth = 9);
00199 
00200 //! Concatenate all image arrays, Nx arrays per line.
00201 /*! Also reshape each array to (destX, destY) if these are != -1. */
00202 template <class T_or_RGB>
00203 Image<T_or_RGB> concatArray(const Image<T_or_RGB> arr[],
00204                             const int nbarr, const int Nx,
00205                             const int destX = -1, const int destY = -1);
00206 
00207 //! Decimate in X and Y (take one every 'factor' pixels).
00208 /*! @param xfactor factor by which to decimate in the x direction
00209 
00210     @param yfactor factor by which to decimate in the y direction; if
00211     this value is less than zero, then just take yfactor=xfactor
00212 */
00213 template <class T_or_RGB>
00214 Image<T_or_RGB> decXY(const Image<T_or_RGB>& src,
00215                       const int xfactor = 2, const int yfactor = -1);
00216 
00217 //! Decimate in X (take one every 'factor' pixels).
00218 template <class T_or_RGB>
00219 Image<T_or_RGB> decX(const Image<T_or_RGB>& src, const int factor = 2);
00220 
00221 //! Decimate in Y (take one every 'factor' pixels).
00222 template <class T_or_RGB>
00223 Image<T_or_RGB> decY(const Image<T_or_RGB>& src, const int factor = 2);
00224 
00225 //! Blur and then decimate in Y. Equivalent to decY(sepFilter(src)).
00226 /*! This is logically equivalent to constructing a boxcar filter of
00227     size factor, then doing decY(sepFilter(src, [], filter)). However,
00228     this implementation is optimized to be much faster, especially if
00229     factor is large, since we avoid computing the filter results that
00230     would just be thrown away by the subsequent decimation. */
00231 template <class T>
00232 Image<T> blurAndDecY(const Image<T>& src, const int factor);
00233 
00234 //! Interpolate in X and Y (zero-pad if dupli == false, or duplicate).
00235 template <class T_or_RGB>
00236 Image<T_or_RGB> intXY(const Image<T_or_RGB>& src, const bool dupli);
00237 
00238 //! Interpolate in X (zero-pad if dupli == false or duplicate).
00239 template <class T_or_RGB>
00240 Image<T_or_RGB> intX(const Image<T_or_RGB>& src, const bool dupli);
00241 
00242 //! Interpolate in Y (zero-pad if dupli == false or duplicate).
00243 template <class T_or_RGB>
00244 Image<T_or_RGB> intY(const Image<T_or_RGB>& src, const bool dupli);
00245 
00246 //! Zoom up an image by duplicating pixels.
00247 /*! Separate scaling factors can be given for the x and y dimensions.
00248 
00249     @param src Input image.
00250     @param xzoom Zoom factor for x dimension (default 2).
00251     @param yzoom Zoom factor for y dimension. If negative (the default),
00252     then yzoom is taken to be the same as xzoom.
00253 */
00254 template <class T_or_RGB>
00255 Image<T_or_RGB> zoomXY(const Image<T_or_RGB>& src,
00256                        int xzoom = 2, int yzoom = -1);
00257 
00258 //! Rotate an image about (x,y) by ang(in Radians), without interpolation
00259 template <class T_or_RGB>
00260 Image<T_or_RGB> rotate(const Image<T_or_RGB>& srcImg,
00261                        const int x, const int y,
00262                        const float ang);
00263 
00264 //! Zoom by a factor numer/denom if numer>denom, else decimate by a factor of denom/numer
00265 template <class T>
00266 inline Image<T> zoomRational(const Image<T>& in,
00267                              const uint numer, const uint denom)
00268 {
00269   ASSERT(numer > 0);
00270   ASSERT(denom > 0);
00271 
00272   return (numer > denom)
00273     ? zoomXY(in, numer / denom)
00274     : decXY(in, denom / numer);
00275 }
00276 
00277 // ######################################################################
00278 /* So things look consistent in everyone's emacs... */
00279 /* Local Variables: */
00280 /* indent-tabs-mode: nil */
00281 /* End: */
00282 
00283 #endif // !IMAGE_SHAPEOPS_H_DEFINED
Generated on Sun May 8 08:40:57 2011 for iLab Neuromorphic Vision Toolkit by  doxygen 1.6.3