00001 /*!@file VFAT/test-NPclassify2.C Test the non-parametric classifier */ 00002 00003 // //////////////////////////////////////////////////////////////////// // 00004 // The iLab Neuromorphic Vision C++ Toolkit - Copyright (C) 2001 by the // 00005 // University of Southern California (USC) and the iLab at USC. // 00006 // See http://iLab.usc.edu for information about this project. // 00007 // //////////////////////////////////////////////////////////////////// // 00008 // Major portions of the iLab Neuromorphic Vision Toolkit are protected // 00009 // under the U.S. patent ``Computation of Intrinsic Perceptual Saliency // 00010 // in Visual Environments, and Applications'' by Christof Koch and // 00011 // Laurent Itti, California Institute of Technology, 2001 (patent // 00012 // pending; application number 09/912,225 filed July 23, 2001; see // 00013 // http://pair.uspto.gov/cgi-bin/final/home.pl for current status). // 00014 // //////////////////////////////////////////////////////////////////// // 00015 // This file is part of the iLab Neuromorphic Vision C++ Toolkit. // 00016 // // 00017 // The iLab Neuromorphic Vision C++ Toolkit is free software; you can // 00018 // redistribute it and/or modify it under the terms of the GNU General // 00019 // Public License as published by the Free Software Foundation; either // 00020 // version 2 of the License, or (at your option) any later version. // 00021 // // 00022 // The iLab Neuromorphic Vision C++ Toolkit is distributed in the hope // 00023 // that it will be useful, but WITHOUT ANY WARRANTY; without even the // 00024 // implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR // 00025 // PURPOSE. See the GNU General Public License for more details. // 00026 // // 00027 // You should have received a copy of the GNU General Public License // 00028 // along with the iLab Neuromorphic Vision C++ Toolkit; if not, write // 00029 // to the Free Software Foundation, Inc., 59 Temple Place, Suite 330, // 00030 // Boston, MA 02111-1307 USA. // 00031 // //////////////////////////////////////////////////////////////////// // 00032 // 00033 // Primary maintainer for this file: T Nathan Mundhenk <mundhenk@usc.edu> 00034 // $HeadURL: svn://isvn.usc.edu/software/invt/trunk/saliency/src/VFAT/test-NPclassify2.C $ 00035 // $Id: test-NPclassify2.C 6003 2005-11-29 17:22:45Z rjpeters $ 00036 // 00037 00038 // ############################################################ 00039 // ############################################################ 00040 // ##### ---NPclassify--- 00041 // ##### non-parametric classifier: 00042 // ##### T. Nathan Mundhenk nathan@mundhenk.com 00043 // ##### Vidhya Navalpakkam - navalpak@usc.edu 00044 // ##### partners full name - email 00045 // ############################################################ 00046 // ############################################################ 00047 00048 //This is the start of the execution path for the NPclassify test alg.#include "log.H" 00049 00050 #include "VFAT/NPclassify2.H" 00051 00052 00053 #define INVALS 31 00054 00055 //! This is the configFile name 00056 char* configFile; 00057 //! This is the configFile object 00058 readConfig configIn(25); 00059 readConfig polySet(25); 00060 //! number of items if training 00061 int itemNumber; 00062 int features; 00063 int datasize; 00064 00065 int main(int argc, char* argv[]) 00066 { 00067 float inVals[INVALS]; 00068 // get test file 00069 std::ifstream inFile(argv[1],std::ios::in); 00070 features = (int)atof(argv[2]); 00071 datasize = (int)atof(argv[3]); 00072 for(int i = 0; i < INVALS; i++) 00073 { 00074 inVals[i] = atof(argv[4+i]); 00075 } 00076 00077 // create operating objects 00078 configIn.openFile("NPclassify.conf"); 00079 polySet.openFile("polySet.conf"); 00080 00081 std::string in; 00082 std::vector<float> feature(features,0); 00083 std::vector<std::vector<float> > vectorIn(datasize,feature); 00084 00085 long featureCount = 0; 00086 int column = 0; 00087 int row = 0; 00088 bool comment = false; 00089 00090 // convert test file to vector format 00091 //std::cerr << "Parsing config file" << argv[1] << "\n"; 00092 while (inFile >> in) 00093 { 00094 if(!in.compare("#")) //comment code # found 00095 { 00096 if(!comment) 00097 { 00098 comment = true; 00099 } 00100 else //end of comment 00101 { 00102 comment = false; 00103 } 00104 } 00105 if((!comment) && in.compare("#")) //real line found 00106 { 00107 vectorIn[row][column] = atof(in.c_str()) * atof(argv[INVALS+4+column]); 00108 //std::cerr << "Adding " << in << "[" << row << "]" 00109 // << "[" << column << "]\n"; 00110 column++; 00111 if(column == features) 00112 { 00113 column = 0; 00114 row++; 00115 featureCount++; 00116 } 00117 } 00118 } 00119 00120 // (1) create the NP classify object, input conf files, specify if settings 00121 // are from command line 00122 NPclassify2<float> NP(configIn,polySet,false); 00123 // (2) input any command line arguments if any 00124 00125 NP.NPinputCommandLineSettings(inVals); 00126 00127 //----------------------------------------------------------------// 00128 00129 // classify space using density webs 00130 // (3) specify the size of your space in samples and dimensions 00131 NP.NPresizeSpace(featureCount,features); 00132 // (4) input the current vector into the NP clusterer 00133 NP.NPaddSpace(vectorIn); 00134 // (5) start the alg. 00135 NP.NPclassifySpaceNew(false); 00136 std::cerr << "DONE\n"; 00137 00138 long roots = NP.NPgetStemNumberEdit(); 00139 std::cout << roots << "\n"; 00140 }