score-classic-searcharray.C

Go to the documentation of this file.
00001 /*!@file AppPsycho/score-classic-searcharray.C */
00002 
00003 // //////////////////////////////////////////////////////////////////// //
00004 // The iLab Neuromorphic Vision C++ Toolkit - Copyright (C) 2000-2005   //
00005 // by the University of Southern California (USC) and the iLab at USC.  //
00006 // See http://iLab.usc.edu for information about this project.          //
00007 // //////////////////////////////////////////////////////////////////// //
00008 // Major portions of the iLab Neuromorphic Vision Toolkit are protected //
00009 // under the U.S. patent ``Computation of Intrinsic Perceptual Saliency //
00010 // in Visual Environments, and Applications'' by Christof Koch and      //
00011 // Laurent Itti, California Institute of Technology, 2001 (patent       //
00012 // pending; application number 09/912,225 filed July 23, 2001; see      //
00013 // http://pair.uspto.gov/cgi-bin/final/home.pl for current status).     //
00014 // //////////////////////////////////////////////////////////////////// //
00015 // This file is part of the iLab Neuromorphic Vision C++ Toolkit.       //
00016 //                                                                      //
00017 // The iLab Neuromorphic Vision C++ Toolkit is free software; you can   //
00018 // redistribute it and/or modify it under the terms of the GNU General  //
00019 // Public License as published by the Free Software Foundation; either  //
00020 // version 2 of the License, or (at your option) any later version.     //
00021 //                                                                      //
00022 // The iLab Neuromorphic Vision C++ Toolkit is distributed in the hope  //
00023 // that it will be useful, but WITHOUT ANY WARRANTY; without even the   //
00024 // implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR      //
00025 // PURPOSE.  See the GNU General Public License for more details.       //
00026 //                                                                      //
00027 // You should have received a copy of the GNU General Public License    //
00028 // along with the iLab Neuromorphic Vision C++ Toolkit; if not, write   //
00029 // to the Free Software Foundation, Inc., 59 Temple Place, Suite 330,   //
00030 // Boston, MA 02111-1307 USA.                                           //
00031 // //////////////////////////////////////////////////////////////////// //
00032 //
00033 // Primary maintainer for this file: Rob Peters <rjpeters at usc dot edu>
00034 // $HeadURL: svn://isvn.usc.edu/software/invt/trunk/saliency/src/AppPsycho/score-classic-searcharray.C $
00035 // $Id: score-classic-searcharray.C 9490 2008-03-18 17:44:42Z rjpeters $
00036 //
00037 
00038 #ifndef APPPSYCHO_SCORE_CLASSIC_SEARCHARRAY_C_DEFINED
00039 #define APPPSYCHO_SCORE_CLASSIC_SEARCHARRAY_C_DEFINED
00040 
00041 #include "Image/CutPaste.H"
00042 #include "Image/Image.H"
00043 #include "Image/MathOps.H"
00044 #include "Image/Range.H"
00045 #include "Image/ShapeOps.H"
00046 #include "Raster/GenericFrame.H"
00047 #include "Raster/PfmParser.H"
00048 #include "Raster/Raster.H"
00049 #include "Util/StringConversions.H"
00050 #include "Util/StringUtil.H"
00051 #include "Util/log.H"
00052 
00053 #include "GUI/XWinManaged.H"
00054 #include "Image/Normalize.H"
00055 #include "Image/DrawOps.H"
00056 
00057 #include <cstdio>
00058 #include <fstream>
00059 #include <string>
00060 #include <vector>
00061 
00062 static int fixnum(const double x, const std::vector<double>& vals)
00063 {
00064   int fixnum = 1;
00065   for (size_t i = 0; i < vals.size(); ++i)
00066     if (vals[i] >= x) ++fixnum;
00067   return fixnum;
00068 }
00069 
00070 int main(int argc, char** argv)
00071 {
00072   if (argc != 6)
00073     {
00074       fprintf(stderr, "usage: %s salmap dims keyfile scorefile stimimage\n", argv[0]);
00075       return -1;
00076     }
00077 
00078   const std::string salmapfile = argv[1];
00079   const Dims rescaledims = fromStr<Dims>(argv[2]);
00080   const std::string keyfile = argv[3];
00081   const std::string scorefile = argv[4];
00082   const Image<byte> stimimage = Raster::ReadGray(argv[5]);
00083 
00084 //   Image<PixRGB<byte> > stimmarkup(stimimage);
00085 
00086   const Image<float> salmap0 = PfmParser(salmapfile).getFrame().asFloat();
00087   const Image<float> salmap = rescaleBilinear(salmap0, rescaledims);
00088 
00089 //   Image<PixRGB<byte> > salmarkup(normalizeFloat(salmap, FLOAT_NORM_0_255));;
00090 
00091   std::vector<double> bgmeanvals;
00092   std::vector<double> bgmaxvals;
00093   std::vector<double> fgmeanvals;
00094   std::vector<double> fgmaxvals;
00095 
00096   std::ifstream ifs(keyfile.c_str());
00097   if (!ifs.is_open())
00098     LFATAL("couldn't open '%s' for reading", keyfile.c_str());
00099 
00100   std::string line;
00101   while (std::getline(ifs, line))
00102     {
00103       if (line[0] == '%')
00104         continue;
00105 
00106       std::vector<std::string> toks;
00107       split(line, " ", std::back_inserter(toks));
00108       if (toks.size() != 5)
00109         LFATAL("malformed line: '%s'", line.c_str());
00110 
00111       const int x0 = fromStr<int>(toks[1]);
00112       const int y0 = fromStr<int>(toks[2]);
00113       const int x1 = fromStr<int>(toks[3]);
00114       const int y1 = fromStr<int>(toks[4]);
00115 
00116 //       const Rectangle r = Rectangle::tlbrO(y0 + int(0.25*(y1-y0)),
00117 //                                            x0 + int(0.25*(x1-x0)),
00118 //                                            y0 + int(0.75*(y1-y0)),
00119 //                                            x0 + int(0.75*(x1-x0)))
00120 //         .getOverlap(salmap.getBounds());
00121       const Rectangle r = Rectangle::tlbrO(y0, x0, y1, x1)
00122         .getOverlap(salmap.getBounds());
00123 
00124       const Image<float> patch = crop(salmap, r, false);
00125 
00126       const float patchmean = mean(patch);
00127       const Range<float> patchrange = rangeOf(patch);
00128 
00129       if (fromStr<int>(toks[0]) == 0)
00130         {
00131           bgmeanvals.push_back(patchmean);
00132           bgmaxvals.push_back(patchrange.max());
00133 
00134 //           drawRectSquareCorners(stimmarkup, r, PixRGB<byte>(0,0,255), 2);
00135 //           drawRectSquareCorners(salmarkup, r, PixRGB<byte>(0,0,255), 2);
00136         }
00137       else if (fromStr<int>(toks[0]) == 1)
00138         {
00139           fgmeanvals.push_back(patchmean);
00140           fgmaxvals.push_back(patchrange.max());
00141 
00142 //           drawRectSquareCorners(stimmarkup, r, PixRGB<byte>(255,0,0), 2);
00143 //           drawRectSquareCorners(salmarkup, r, PixRGB<byte>(255,0,0), 2);
00144         }
00145       else
00146         LFATAL("invalid fg value '%s'", toks[0].c_str());
00147     }
00148 
00149   ifs.close();
00150 
00151   const Image<double> bgmean(&bgmeanvals[0], bgmeanvals.size(), 1);
00152   const Image<double> bgmax(&bgmaxvals[0], bgmaxvals.size(), 1);
00153   const Image<double> fgmean(&fgmeanvals[0], fgmeanvals.size(), 1);
00154   const Image<double> fgmax(&fgmaxvals[0], fgmaxvals.size(), 1);
00155 
00156   const double mean_bgmean = mean(bgmean);
00157   const double mean_bgmax = mean(bgmax);
00158   const double std_bgmean = stdev(bgmean);
00159   const double std_bgmax = stdev(bgmax);
00160   const double mean_fgmean = mean(fgmean);
00161   const double mean_fgmax = mean(fgmax);
00162 
00163   FILE* fwarn = fopen("warnings.txt", "a");
00164   if (fwarn == 0)
00165     LFATAL("couldn't open 'warnings.txt' for appending");
00166   bool bad = false;
00167 #define CHECKNAN(x) if (isnan(x)) { bad = true; fprintf(fwarn, "nan: %s (args = %s %s %s %s)\n", #x, argv[1], argv[2], argv[3], argv[4]); }
00168   CHECKNAN(mean_bgmean);
00169   CHECKNAN(mean_bgmax);
00170   CHECKNAN(std_bgmean);
00171   CHECKNAN(std_bgmax);
00172   CHECKNAN(mean_fgmean);
00173   CHECKNAN(mean_fgmax);
00174   fclose(fwarn);
00175 
00176   if (bad) exit(0);
00177 
00178   double mean_nitems = 0.0;
00179   double mean_fgmean_zscore = 0.0;
00180   double mean_fgmax_zscore = 0.0;
00181   double mean_fgmean_over_mean_bgmean = 0.0;
00182   double mean_fgmax_over_mean_bgmax = 0.0;
00183   double mean_fgmean_minus_mean_bgmean = 0.0;
00184   double mean_fgmax_minus_mean_bgmax = 0.0;
00185   double mean_fgmean_fixnum = 0.0;
00186   double mean_fgmax_fixnum = 0.0;
00187   int n = 0;
00188 
00189   std::ifstream scorefs(scorefile.c_str());
00190   if (scorefs.is_open())
00191     {
00192       while (std::getline(scorefs, line))
00193         {
00194           std::vector<std::string> toks;
00195           split(line, " ", std::back_inserter(toks));
00196           if (toks.size() != 9)
00197             LFATAL("malformed line in score file: '%s'", line.c_str());
00198 
00199           ++n;
00200           mean_nitems += fromStr<double>(toks[0]);
00201           mean_fgmean_zscore += fromStr<double>(toks[1]);
00202           mean_fgmax_zscore += fromStr<double>(toks[2]);
00203           mean_fgmean_over_mean_bgmean += fromStr<double>(toks[3]);
00204           mean_fgmax_over_mean_bgmax += fromStr<double>(toks[4]);
00205           mean_fgmean_minus_mean_bgmean += fromStr<double>(toks[5]);
00206           mean_fgmax_minus_mean_bgmax += fromStr<double>(toks[6]);
00207           mean_fgmean_fixnum += fromStr<double>(toks[7]);
00208           mean_fgmax_fixnum += fromStr<double>(toks[8]);
00209         }
00210       scorefs.close();
00211     }
00212 
00213   FILE* f = fopen(scorefile.c_str(), "a");
00214   if (f == 0)
00215     LFATAL("couldn't open '%s' for appending", scorefile.c_str());
00216   // mean(fgmean_zscore) mean(fgmax_zscore)  mean(fgmean)/mean(bgmean) mean(fgmax)/mean(bgmax)  mean(fgmean)-mean(bgmean) mean(fgmax)-mean(bgmax)
00217   fprintf(f, "%12d %12g %12g %12g %12g %12g %12g %12d %12d\n",
00218           int(bgmeanvals.size()+fgmeanvals.size()),
00219           mean((fgmean - mean_bgmean) / std_bgmean),
00220           mean((fgmax - mean_bgmax) / std_bgmax),
00221           mean_fgmean / mean_bgmean,
00222           mean_fgmax / mean_bgmax,
00223           mean_fgmean - mean_bgmean,
00224           mean_fgmax - mean_bgmax,
00225           fixnum(mean_fgmean, bgmeanvals),
00226           fixnum(mean_fgmax, bgmaxvals));
00227   fprintf(stderr, "current: %12d %12g %12g %12g %12g %12g %12g %12d %12d\n",
00228           int(bgmeanvals.size()+fgmeanvals.size()),
00229           mean((fgmean - mean_bgmean) / std_bgmean),
00230           mean((fgmax - mean_bgmax) / std_bgmax),
00231           mean_fgmean / mean_bgmean,
00232           mean_fgmax / mean_bgmax,
00233           mean_fgmean - mean_bgmean,
00234           mean_fgmax - mean_bgmax,
00235           fixnum(mean_fgmean, bgmeanvals),
00236           fixnum(mean_fgmax, bgmaxvals));
00237   fclose(f);
00238 
00239   mean_nitems                    += int(bgmeanvals.size()+fgmeanvals.size());
00240   mean_fgmean_zscore             += mean((fgmean - mean_bgmean) / std_bgmean);
00241   mean_fgmax_zscore              += mean((fgmax - mean_bgmax) / std_bgmax);
00242   mean_fgmean_over_mean_bgmean   += mean_fgmean / mean_bgmean;
00243   mean_fgmax_over_mean_bgmax     += mean_fgmax / mean_bgmax;
00244   mean_fgmean_minus_mean_bgmean  += mean_fgmean - mean_bgmean;
00245   mean_fgmax_minus_mean_bgmax    += mean_fgmax - mean_bgmax;
00246   mean_fgmean_fixnum             += fixnum(mean_fgmean, bgmeanvals);
00247   mean_fgmax_fixnum              += fixnum(mean_fgmax, bgmaxvals);
00248 
00249   ++n;
00250 
00251   mean_nitems /= n;
00252   mean_fgmean_zscore /= n;
00253   mean_fgmax_zscore /= n;
00254   mean_fgmean_over_mean_bgmean /= n;
00255   mean_fgmax_over_mean_bgmax /= n;
00256   mean_fgmean_minus_mean_bgmean /= n;
00257   mean_fgmax_minus_mean_bgmax /= n;
00258   mean_fgmean_fixnum /= n;
00259   mean_fgmax_fixnum /= n;
00260 
00261   FILE* fsum = fopen(("sum-"+scorefile).c_str(), "w");
00262   if (fsum == 0)
00263     LFATAL("couldn't open 'sum-%s' for writing", scorefile.c_str());
00264   fprintf(fsum, "%-70s %3d %12g %12g %12g %12g %12g %12g %12g %12g %12g\n",
00265           ("sum-"+scorefile).c_str(),
00266           n,
00267           mean_nitems,
00268           mean_fgmean_zscore,
00269           mean_fgmax_zscore,
00270           mean_fgmean_over_mean_bgmean,
00271           mean_fgmax_over_mean_bgmax,
00272           mean_fgmean_minus_mean_bgmean,
00273           mean_fgmax_minus_mean_bgmax,
00274           mean_fgmean_fixnum,
00275           mean_fgmax_fixnum);
00276   fprintf(stderr, "overall: %3d %12g %12g %12g %12g %12g %12g %12g %12g %12g\n",
00277           n,
00278           mean_nitems,
00279           mean_fgmean_zscore,
00280           mean_fgmax_zscore,
00281           mean_fgmean_over_mean_bgmean,
00282           mean_fgmax_over_mean_bgmax,
00283           mean_fgmean_minus_mean_bgmean,
00284           mean_fgmax_minus_mean_bgmax,
00285           mean_fgmean_fixnum,
00286           mean_fgmax_fixnum);
00287   fclose(fsum);
00288 
00289 //   XWinManaged xwin(concatX(stimmarkup, salmarkup));
00290 //   while (!xwin.pressedCloseButton())
00291 //     usleep(10000);
00292 }
00293 
00294 // ######################################################################
00295 /* So things look consistent in everyone's emacs... */
00296 /* Local Variables: */
00297 /* mode: c++ */
00298 /* indent-tabs-mode: nil */
00299 /* End: */
00300 
00301 #endif // APPPSYCHO_SCORE_CLASSIC_SEARCHARRAY_C_DEFINED
Generated on Sun May 8 08:40:11 2011 for iLab Neuromorphic Vision Toolkit by  doxygen 1.6.3