00001 /*!@file BayesFilters/UKF.H Unscented Kalman Filter */ 00002 00003 // //////////////////////////////////////////////////////////////////// // 00004 // The iLab Neuromorphic Vision C++ Toolkit - Copyright (C) 2001 by the // 00005 // University of Southern California (USC) and the iLab at USC. // 00006 // See http://iLab.usc.edu for information about this project. // 00007 // //////////////////////////////////////////////////////////////////// // 00008 // Major portions of the iLab Neuromorphic Vision Toolkit are protected // 00009 // under the U.S. patent ``Computation of Intrinsic Perceptual Saliency // 00010 // in Visual Environments, and Applications'' by Christof Koch and // 00011 // Laurent Itti, California Institute of Technology, 2001 (patent // 00012 // pending; application number 09/912,225 filed July 23, 2001; see // 00013 // http://pair.uspto.gov/cgi-bin/final/home.pl for current status). // 00014 // //////////////////////////////////////////////////////////////////// // 00015 // This file is part of the iLab Neuromorphic Vision C++ Toolkit. // 00016 // // 00017 // The iLab Neuromorphic Vision C++ Toolkit is free software; you can // 00018 // redistribute it and/or modify it under the terms of the GNU General // 00019 // Public License as published by the Free Software Foundation; either // 00020 // version 2 of the License, or (at your option) any later version. // 00021 // // 00022 // The iLab Neuromorphic Vision C++ Toolkit is distributed in the hope // 00023 // that it will be useful, but WITHOUT ANY WARRANTY; without even the // 00024 // implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR // 00025 // PURPOSE. See the GNU General Public License for more details. // 00026 // // 00027 // You should have received a copy of the GNU General Public License // 00028 // along with the iLab Neuromorphic Vision C++ Toolkit; if not, write // 00029 // to the Free Software Foundation, Inc., 59 Temple Place, Suite 330, // 00030 // Boston, MA 02111-1307 USA. // 00031 // //////////////////////////////////////////////////////////////////// // 00032 // 00033 // Primary maintainer for this file: Lior Elazary 00034 // $HeadURL: $ 00035 // $Id: $ 00036 // 00037 00038 #ifndef UKF_H_DEFINED 00039 #define UKF_H_DEFINED 00040 00041 #include "Image/Image.H" 00042 #include "Image/MatrixOps.H" 00043 #include "Image/lapack.H" 00044 #include <stdio.h> 00045 #include <stdlib.h> 00046 00047 00048 class UKF 00049 { 00050 public: 00051 UKF(int numStates, int numObservations, 00052 double k = 0, //secondery scaling param 00053 double alpha = 1e-3, //the spread of the sigma points around the mean 00054 double beta = 2 //Used to incorporate prior knowledge of the distribution 00055 ); 00056 00057 virtual ~UKF() {}; 00058 00059 //! The function to move from one state to another (need to be implemented) 00060 virtual Image<double> getNextState(const Image<double>& X, int k) = 0; 00061 00062 //! The function to predict the observation from the current state 00063 virtual Image<double> getObservation(const Image<double>& X, int k) = 0; 00064 00065 //! Predict the next state and covariance 00066 void predictState(const Image<double>& noise=Image<double>()); 00067 00068 //! Predict the observations 00069 void predictObservation(const Image<double>& noise=Image<double>()); 00070 00071 //! Update the state and covariance given the observation z 00072 void update(const Image<double>& z, const Image<double>& noise); 00073 00074 //! Get the likelihood of a mesurment 00075 double getLikelihood(const Image<double>& z, const Image<double>& observationNoise); 00076 00077 protected: 00078 int itsNumStates; 00079 int itsNumObservations; 00080 00081 //Scaling factor which determine how far sigma points a spread from the mean 00082 double itsAlpha; 00083 double itsK; 00084 00085 //used to incude high order information about the distribution 00086 double itsBeta; 00087 00088 //The state mean and covariance 00089 Image<double> itsState; 00090 Image<double> itsSigma; 00091 00092 //Noise models 00093 Image<double> itsR; //processes noise 00094 Image<double> itsQ; //Measurement noise 00095 00096 00097 Image<double> getSigmaLocations(const Image<double>& state, 00098 const Image<double>& sigma, double gamma); 00099 00100 Image<double> itsSigmaLocations; //The locations we are going to sample from 00101 Image<double> itsNewStates; //The predicted next state from the sigma locations 00102 Image<double> itsNewZ; //the predicted observations from the sigma locations 00103 Image<double> itsPredictedZ; //the predicted observations 00104 Image<double> itsPredictedZSigma; //the predicted observations covariance 00105 00106 00107 private: 00108 double itsLambda; 00109 double itsGamma; 00110 Image<double> itsMuWeight; 00111 Image<double> itsSigmaWeight; 00112 double itsGaussNormalizer; 00113 bool itsUnstable; //is the covariance symmetric? 00114 00115 00116 }; 00117 00118 // ###################################################################### 00119 /* So things look consistent in everyone's emacs... */ 00120 /* Local Variables: */ 00121 /* indent-tabs-mode: nil */ 00122 /* End: */ 00123 00124 #endif