GentleBoostComponent.C

Go to the documentation of this file.
00001 /*!@file Learn/GentleBoostComponent.C Gentle BOOST Classifier component */
00002 
00003 // //////////////////////////////////////////////////////////////////// //
00004 // The iLab Neuromorphic Vision C++ Toolkit - Copyright (C) 2001 by the //
00005 // University of Southern California (USC) and the iLab at USC.         //
00006 // See http://iLab.usc.edu for information about this project.          //
00007 // //////////////////////////////////////////////////////////////////// //
00008 // Major portions of the iLab Neuromorphic Vision Toolkit are protected //
00009 // under the U.S. patent ``Computation of Intrinsic Perceptual Saliency //
00010 // in Visual Environments, and Applications'' by Christof Koch and      //
00011 // Laurent Itti, California Institute of Technology, 2001 (patent       //
00012 // pending; application number 09/912,225 filed July 23, 2001; see      //
00013 // http://pair.uspto.gov/cgi-bin/final/home.pl for current status).     //
00014 // //////////////////////////////////////////////////////////////////// //
00015 // This file is part of the iLab Neuromorphic Vision C++ Toolkit.       //
00016 //                                                                      //
00017 // The iLab Neuromorphic Vision C++ Toolkit is free software; you can   //
00018 // redistribute it and/or modify it under the terms of the GNU General  //
00019 // Public License as published by the Free Software Foundation; either  //
00020 // version 2 of the License, or (at your option) any later version.     //
00021 //                                                                      //
00022 // The iLab Neuromorphic Vision C++ Toolkit is distributed in the hope  //
00023 // that it will be useful, but WITHOUT ANY WARRANTY; without even the   //
00024 // implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR      //
00025 // PURPOSE.  See the GNU General Public License for more details.       //
00026 //                                                                      //
00027 // You should have received a copy of the GNU General Public License    //
00028 // along with the iLab Neuromorphic Vision C++ Toolkit; if not, write   //
00029 // to the Free Software Foundation, Inc., 59 Temple Place, Suite 330,   //
00030 // Boston, MA 02111-1307 USA.                                           //
00031 // //////////////////////////////////////////////////////////////////// //
00032 //
00033 // Primary maintainer for this file: Daniel Parks <danielfp@usc.edu>
00034 // $HeadURL$
00035 // $Id$
00036 //
00037 
00038 #include "Learn/GentleBoost.H"
00039 #include "GentleBoostComponent.H"
00040 #include "Util/StringUtil.H"
00041 
00042 #include <fstream>
00043 #include <iostream>
00044 #include <iomanip>
00045 #include <string>
00046 #include <cstdlib>
00047 #include <limits>
00048 
00049 const ModelOptionCateg MOC_GentleBoost = {
00050   MOC_SORTPRI_3,   "GentleBoost Related Options" };
00051 
00052 const ModelOptionDef OPT_GBModelInputFileNames =
00053 { MODOPT_ARG_STRING, "GB Model Input File Names", &MOC_GentleBoost, OPTEXP_CORE,
00054   "Colon separated list of input filenames to load GB models",
00055   "gb-model-inputfiles", '\0', "<filename1:filename2>", "" };
00056 
00057 const ModelOptionDef OPT_GBModelOutputFileNames =
00058 { MODOPT_ARG_STRING, "GB Model Output File Names", &MOC_GentleBoost, OPTEXP_CORE,
00059   "Colon separated list of output filenames to write GB models",
00060   "gb-model-outputfiles", '\0', "<filename1:filename2>", "" };
00061 
00062 const ModelOptionDef OPT_GBModelNames =
00063 { MODOPT_ARG_STRING, "GB Model Names", &MOC_GentleBoost, OPTEXP_CORE,
00064   "Colon separated list of model names for the GB",
00065   "gb-model-names", '\0', "<name1:name2>", "" };
00066 
00067 const ModelOptionDef OPT_GBMode =
00068 { MODOPT_ARG_STRING, "GB Mode", &MOC_GentleBoost, OPTEXP_CORE,
00069   "The mode of GB Classifier. Train|Rec",
00070   "gb-mode", '\0', "<Train|Rec>", "Rec" };
00071 
00072 const ModelOptionDef OPT_GBMaxIters =
00073 { MODOPT_ARG(int), "GB Max Iters", &MOC_GentleBoost, OPTEXP_CORE,
00074   "Maximum number of iterations to train boosted classifier",
00075   "gb-maxiters", '\0', "<Train|Rec>", "10" };
00076 
00077 
00078 
00079 GentleBoostComponent::GentleBoostComponent(OptionManager& mgr,
00080                                      const std::string& descrName,
00081                                      const std::string& tagName) :
00082     ModelComponent(mgr, descrName, tagName),
00083     itsGBModelInputFileNamesStr(&OPT_GBModelInputFileNames, this),
00084     itsGBModelOutputFileNamesStr(&OPT_GBModelOutputFileNames, this),
00085     itsGBModelNamesStr(&OPT_GBModelNames, this),
00086     itsGBMode(&OPT_GBMode, this),
00087     itsMaxIters(&OPT_GBMaxIters, this),
00088     itsLoadComplete(false)
00089 {
00090 }
00091 
00092 GentleBoostComponent::~GentleBoostComponent()
00093 {
00094 }
00095 
00096 
00097 
00098 void GentleBoostComponent::start2()
00099 {
00100   ModelComponent::start2();
00101   
00102   // Parse which model input files should be loaded
00103   split(itsGBModelInputFileNamesStr.getVal(), ":", std::back_inserter(itsGBModelInputFiles));
00104 
00105   // Parse which model output files should be written
00106   split(itsGBModelOutputFileNamesStr.getVal(), ":", std::back_inserter(itsGBModelOutputFiles));
00107 
00108   // Parse which model names should be loaded
00109   split(itsGBModelNamesStr.getVal(), ":", std::back_inserter(itsGBModelNames));
00110 
00111   ASSERT(itsMaxIters.getVal() > 0);
00112 
00113   if (itsGBMode.getVal().compare("Train") == 0)          // training
00114   {
00115     if(itsGBModelOutputFiles.size() == 0 || itsGBModelOutputFiles.size() != itsGBModelNames.size()) {
00116       LFATAL("Must specify gb model output file(s) (and equal number of model names) if in training mode");
00117     }
00118     // Load basic classifier for training
00119     GentleBoost classifier;
00120     itsClassifiers.push_back(classifier);
00121     itsClassifierLabels.push_back(std::vector<int>());
00122     itsClassifierVectors.push_back(std::vector<std::vector<float> >());
00123   }
00124   else if (itsGBMode.getVal().compare("Rec") == 0)      // Recognition
00125   {
00126     if(itsGBModelInputFiles.size() == 0 || itsGBModelInputFiles.size() != itsGBModelNames.size()){
00127       LFATAL("Must specify gb model input file(s) (and equal number of model names) if in recognition mode");
00128     }
00129     for(size_t c=0;c<itsGBModelInputFiles.size();c++)
00130     {
00131       GentleBoost classifier;
00132       // Load model file
00133       classifier.load(itsGBModelInputFiles[c]);
00134       itsClassifiers.push_back(classifier);
00135       itsClassifierLabels.push_back(std::vector<int>());
00136       itsClassifierVectors.push_back(std::vector<std::vector<float> >());
00137     }
00138   }
00139   else
00140     LFATAL("Unknown GB Mode type %s", itsGBMode.getVal().c_str());
00141   itsLoadComplete = true;
00142 }
00143 
00144 // ######################################################################
00145 void GentleBoostComponent::stop1()
00146 {
00147   ModelComponent::stop1();
00148   if(itsLoadComplete)
00149   {
00150     train(itsMaxIters.getVal());
00151     save();
00152   }
00153 }
00154 
00155 std::string GentleBoostComponent::getMode()
00156 {
00157   return itsGBMode.getVal();
00158 }
00159 
00160 
00161 std::vector<std::string> GentleBoostComponent::getModelNames()
00162 {
00163   return itsGBModelNames;
00164 }
00165 
00166 int GentleBoostComponent::getMostLikelyClass(const std::map<int,float>& pdf)
00167 {
00168   float maxClassVal=-std::numeric_limits<float>::max();
00169   int maxClassIdx=-1;
00170   std::map<int,float>::const_iterator pitr;
00171   for(pitr=pdf.begin();pitr!=pdf.end();pitr++)
00172   {
00173     if(maxClassVal < pitr->second)
00174         {
00175           maxClassVal=pitr->second;
00176           maxClassIdx=pitr->first;
00177         }
00178   }
00179   ASSERT(maxClassIdx>=0);
00180   return maxClassIdx;
00181 }
00182 
00183 
00184 // Add training examplar
00185 void GentleBoostComponent::addTrainVector(std::vector<float> featureVector, int id, int classifierId)
00186 {
00187   itsClassifierVectors[classifierId].push_back(featureVector);
00188   itsClassifierLabels[classifierId].push_back(id);
00189 }
00190 
00191 // Train the classifier on the final data
00192 void  GentleBoostComponent::train(int classifierId)
00193 {
00194   // NOTE: Training vectors must be transposed here
00195   // If not specified, train all classifiers
00196   if(classifierId == -1)
00197   {
00198     for(size_t c=0;c<itsClassifiers.size();c++)
00199     {
00200       if(itsClassifierLabels[c].size() > 0)
00201       {
00202         itsClassifiers[c].train(itsClassifiers[c].transpose(itsClassifierVectors[c]),itsClassifierLabels[c],itsMaxIters.getVal());
00203       }
00204     }
00205   }
00206   else
00207   {
00208     if(itsClassifierLabels[classifierId].size() > 0)
00209       itsClassifiers[classifierId].train(itsClassifiers[classifierId].transpose(itsClassifierVectors[classifierId]),itsClassifierLabels[classifierId],itsMaxIters.getVal());
00210   }
00211 }
00212 
00213 // Save the classifier data
00214 void  GentleBoostComponent::save(int classifierId)
00215 {
00216   // If not specified, train all classifiers
00217   if(classifierId == -1)
00218   {
00219     for(size_t c=0;c<itsClassifiers.size();c++)
00220     {
00221       itsClassifiers[c].save(itsGBModelOutputFiles[c]);
00222     }
00223   }
00224   else
00225   {
00226     itsClassifiers[classifierId].save(itsGBModelOutputFiles[classifierId]);
00227   }
00228 }
00229 
00230 
00231 int GentleBoostComponent::predict(std::vector<float> featureVector, int classifierId)
00232 {
00233   std::vector<std::vector<float> > convVec(1);
00234   convVec[0] = featureVector;
00235   // Transpose vector from 1xn to nx1
00236   convVec = itsClassifiers[classifierId].transpose(convVec);
00237   std::vector<int> tmpVec;
00238   tmpVec = itsClassifiers[classifierId].predict(convVec);
00239   return tmpVec[0];
00240 }
00241 
00242 std::map<int, float> GentleBoostComponent::predictPDF(std::vector<float> featureVector, int classifierId)
00243 {
00244   std::map<int, float> out;
00245   std::vector<std::vector<float> > convVec(1);
00246   convVec[0] = featureVector;
00247   // Transpose vector from 1xn to nx1
00248   convVec = itsClassifiers[classifierId].transpose(convVec);
00249   std::map<int, std::vector<float> > tmpMap;
00250   tmpMap = itsClassifiers[classifierId].predictPDF(convVec);
00251   std::map<int,std::vector<float> >::iterator litr;
00252   for(litr=tmpMap.begin();litr!=tmpMap.end();litr++)
00253   {
00254     out[litr->first] = litr->second[0];
00255   }
00256   return out;
00257 }
00258 
00259 
Generated on Sun May 8 08:40:58 2011 for iLab Neuromorphic Vision Toolkit by  doxygen 1.6.3