00001 /*!@file CINNIC/CINNIC2.H Test binary for CINNIC neuron */ 00002 00003 00004 // //////////////////////////////////////////////////////////////////// // 00005 // The iLab Neuromorphic Vision C++ Toolkit - Copyright (C) 2001 by the // 00006 // University of Southern California (USC) and the iLab at USC. // 00007 // See http://iLab.usc.edu for information about this project. // 00008 // //////////////////////////////////////////////////////////////////// // 00009 // Major portions of the iLab Neuromorphic Vision Toolkit are protected // 00010 // under the U.S. patent ``Computation of Intrinsic Perceptual Saliency // 00011 // in Visual Environments, and Applications'' by Christof Koch and // 00012 // Laurent Itti, California Institute of Technology, 2001 (patent // 00013 // pending; application number 09/912,225 filed July 23, 2001; see // 00014 // http://pair.uspto.gov/cgi-bin/final/home.pl for current status). // 00015 // //////////////////////////////////////////////////////////////////// // 00016 // This file is part of the iLab Neuromorphic Vision C++ Toolkit. // 00017 // // 00018 // The iLab Neuromorphic Vision C++ Toolkit is free software; you can // 00019 // redistribute it and/or modify it under the terms of the GNU General // 00020 // Public License as published by the Free Software Foundation; either // 00021 // version 2 of the License, or (at your option) any later version. // 00022 // // 00023 // The iLab Neuromorphic Vision C++ Toolkit is distributed in the hope // 00024 // that it will be useful, but WITHOUT ANY WARRANTY; without even the // 00025 // implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR // 00026 // PURPOSE. See the GNU General Public License for more details. // 00027 // // 00028 // You should have received a copy of the GNU General Public License // 00029 // along with the iLab Neuromorphic Vision C++ Toolkit; if not, write // 00030 // to the Free Software Foundation, Inc., 59 Temple Place, Suite 330, // 00031 // Boston, MA 02111-1307 USA. // 00032 // //////////////////////////////////////////////////////////////////// // 00033 // 00034 // Primary maintainer for this file: T Nathan Mundhenk <mundhenk@usc.edu> 00035 // $HeadURL: svn://isvn.usc.edu/software/invt/trunk/saliency/src/CINNIC/CINNIC2.H $ 00036 // $Id: CINNIC2.H 6003 2005-11-29 17:22:45Z rjpeters $ 00037 // 00038 00039 #ifndef CINNIC2_H_DEFINED 00040 #define CINNIC2_H_DEFINED 00041 00042 #include "Util/readConfig.H" 00043 #include "Util/log.H" 00044 00045 #include "VFAT/readMatrix.H" 00046 00047 #include "CINNIC/contourRun2.H" 00048 #include "CINNIC/contourDefine.H" 00049 #include "CINNIC/CINNICstatsRun.H" 00050 #include "Image/ConvolutionMap.H" 00051 00052 //this is a simple testing alg. for CINNIC 00053 00054 00055 // ############################################################ 00056 // ############################################################ 00057 // ##### ---CINNIC2--- 00058 // ##### Contour Integration: 00059 // ##### T. Nathan Mundhenk nathan@mundhenk.com 00060 // ############################################################ 00061 // ############################################################ 00062 00063 #define CINNIC2_DEC template <unsigned short kernelSize, \ 00064 unsigned short scales, \ 00065 unsigned short orientations, \ 00066 unsigned short iterations, \ 00067 class FLOAT, class INT> 00068 00069 #define CINNIC2_CLASS CINNIC2<kernelSize,scales,orientations, \ 00070 iterations,FLOAT,INT> 00071 00072 //! Main class to run an image in CINNICtest for contours 00073 /*! This is the central class at this point for running CINNIC. 00074 It works by creating a CINNIC template for neuron connections 00075 in contourNeuron. It then imports an image as defines from 00076 the command line. The image is processed for orientations 00077 using the orientedFilter in Image as well as a few other 00078 processes. The image is then reduced and a 3D map of the 00079 image created and stored in ImageMap. This map and the 00080 neuron are then fed into contourRun which runs the 3D image 00081 against the template neuron. Output is produced in many ways 00082 including several raw data dumps and image dumps. 00083 */ 00084 CINNIC2_DEC 00085 class CINNIC2 00086 { 00087 private: 00088 //! set true if using frames 00089 bool CINuseFrameSeries; 00090 bool CINuseMaps; 00091 unsigned int CINframe; 00092 INT CINedgeAtten,CINGnum; 00093 INT CINlPass,CINgroupSize; 00094 INT CINstoreArraySize; 00095 INT CINbaseSize; 00096 INT CINorignalImageSizeX, CINorignalImageSizeY; 00097 FLOAT CINGroupTop; 00098 std::string CINlogto; 00099 std::string CINsaveto; 00100 INT CINscaleSize[scales]; 00101 FLOAT CINscaleBias[scales]; 00102 std::vector<Image<FLOAT> > CINFinput; 00103 std::vector<Image<FLOAT> > CINgroup; 00104 std::vector<Image<FLOAT> > CINresults; 00105 std::vector< std::vector< Image<FLOAT> > > CINIresults; 00106 std::vector< std::vector< Image<FLOAT> > > CINVFinput; 00107 std::vector<INT> CINgroupCount; 00108 std::vector<FLOAT> CINgroupTopVec; 00109 std::vector< 00110 contourRun2<kernelSize,scales,orientations,iterations,FLOAT,INT> > 00111 CINcontourRun; 00112 Image<byte> CINcombinedSalMap; 00113 convolutionMap<FLOAT> CINcMap; 00114 public: 00115 const static unsigned short CINkernelSize = kernelSize; 00116 const static unsigned short CINscales = scales; 00117 const static unsigned short CINorientations = orientations; 00118 const static unsigned short CINiterations = iterations; 00119 const static FLOAT CINsmallNumber = 0.001F; 00120 //! default constructor 00121 CINNIC2(); 00122 ~CINNIC2(); 00123 //! turn on using movie frames 00124 void CINtoggleFrameSeries(bool toggle); 00125 //! load configuration file params 00126 void CINconfigLoad(readConfig &config); 00127 //! run an image in CINNIC2 with a neuron template 00128 void CINrunSimpleImage(const ContourNeuronCreate<FLOAT> &NeuronTemplate, 00129 const char fileName[100], unsigned int frame, 00130 Image<byte> &input, 00131 readConfig &config); 00132 //! get the orientation filtered pre version of the input image 00133 void CINgetOrientFiltered(Image<byte> &input); 00134 //! get the orientation filtered version, but use convolution maps 00135 void CINgetOrientFilteredMap(Image<byte> &input); 00136 //! get the scaled representations of the image 00137 void CINgetScaled(); 00138 //! initalize parameters to run CINNIC2 00139 void CINinitCINNIC(const std::vector< std::vector<Image<FLOAT> > > &input, 00140 readConfig &config, 00141 const INT sizeX, 00142 const INT sizeY); 00143 //! initalize groups to run CINNIC2 00144 void CINcomputeGroups(const std::vector< std::vector<Image<FLOAT> > > &input); 00145 //! call contourRun2 for each iteration and scale 00146 void CINrunImage(const ContourNeuronCreate<FLOAT> &NeuronTemplate, 00147 const std::vector< std::vector<Image<FLOAT> > > &input, 00148 readConfig &config, 00149 const std::vector<FLOAT> >V); 00150 //! call contourRun2 for each iteration and scale 00151 void CINrunImageFrames(const ContourNeuronCreate<FLOAT> &NeuronTemplate, 00152 const std::vector< std::vector<Image<FLOAT> > > &input, 00153 readConfig &config, 00154 const std::vector<FLOAT> >V); 00155 00156 }; 00157 00158 #endif 00159 00160 // ###################################################################### 00161 /* So things look consistent in everyone's emacs... */ 00162 /* Local Variables: */ 00163 /* indent-tabs-mode: nil */ 00164 /* End: */