FeatureVector.C

Go to the documentation of this file.
00001 /*!@file SIFT/FeatureVector.C Feature vector for SIFT obj recognition */
00002 
00003 // //////////////////////////////////////////////////////////////////// //
00004 // The iLab Neuromorphic Vision C++ Toolkit - Copyright (C) 2001 by the //
00005 // University of Southern California (USC) and the iLab at USC.         //
00006 // See http://iLab.usc.edu for information about this project.          //
00007 // //////////////////////////////////////////////////////////////////// //
00008 // Major portions of the iLab Neuromorphic Vision Toolkit are protected //
00009 // under the U.S. patent ``Computation of Intrinsic Perceptual Saliency //
00010 // in Visual Environments, and Applications'' by Christof Koch and      //
00011 // Laurent Itti, California Institute of Technology, 2001 (patent       //
00012 // pending; application number 09/912,225 filed July 23, 2001; see      //
00013 // http://pair.uspto.gov/cgi-bin/final/home.pl for current status).     //
00014 // //////////////////////////////////////////////////////////////////// //
00015 // This file is part of the iLab Neuromorphic Vision C++ Toolkit.       //
00016 //                                                                      //
00017 // The iLab Neuromorphic Vision C++ Toolkit is free software; you can   //
00018 // redistribute it and/or modify it under the terms of the GNU General  //
00019 // Public License as published by the Free Software Foundation; either  //
00020 // version 2 of the License, or (at your option) any later version.     //
00021 //                                                                      //
00022 // The iLab Neuromorphic Vision C++ Toolkit is distributed in the hope  //
00023 // that it will be useful, but WITHOUT ANY WARRANTY; without even the   //
00024 // implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR      //
00025 // PURPOSE.  See the GNU General Public License for more details.       //
00026 //                                                                      //
00027 // You should have received a copy of the GNU General Public License    //
00028 // along with the iLab Neuromorphic Vision C++ Toolkit; if not, write   //
00029 // to the Free Software Foundation, Inc., 59 Temple Place, Suite 330,   //
00030 // Boston, MA 02111-1307 USA.                                           //
00031 // //////////////////////////////////////////////////////////////////// //
00032 //
00033 // Primary maintainer for this file: James Bonaiuto <bonaiuto@usc.edu>
00034 // $HeadURL: svn://isvn.usc.edu/software/invt/trunk/saliency/src/SIFT/FeatureVector.C $
00035 // $Id: FeatureVector.C 9412 2008-03-10 23:10:15Z farhan $
00036 //
00037 
00038 #include "SIFT/FeatureVector.H"
00039 #include "Util/Assert.H"
00040 #include "Util/Promotions.H"  // for clamped_convert<T>()
00041 #include <cmath>
00042 #include "Image/DrawOps.H"
00043 
00044 // ######################################################################
00045 FeatureVector::FeatureVector(int xSize, int ySize, int zSize, bool wrapZ) :
00046   itsFV(xSize*ySize*zSize, 0.0F),
00047   itsXSize(xSize), itsYSize(ySize), itsZSize(zSize), itsWrapZ(wrapZ)
00048 { }
00049 
00050 // ######################################################################
00051 FeatureVector::~FeatureVector()
00052 { }
00053 
00054 // ########################################################################
00055 void FeatureVector::addValue(const float x, const float y,
00056                              const float z, const float value)
00057 {
00058   int xi0, xi1, yi0, yi1, zi0, zi1;   // bins
00059   float wx0, wy0, wz0, wx1, wy1, wz1; // corresponding weights
00060 
00061   // if close to bounds then the values go fully into the end bins,
00062   // otherwise they split between two adjacent bins. Note: a value of
00063   // 2.0 should equally split between bins 1 and 2:
00064   if (x <= 0.5F)
00065     { xi0 = 0; xi1 = 0; wx0 = 0.5F; wx1 = 0.5F; }
00066   else if (x >= (float)itsXSize-0.5F)
00067     { xi0 = itsXSize-1; xi1 = itsXSize-1; wx0 = 0.5F; wx1 = 0.5F; }
00068   else
00069     {
00070       const float xx = x - 0.5F;
00071       xi0 = int(xx); xi1 = xi0 + 1;
00072       wx1 = xx - float(xi0); wx0 = 1.0F - wx1;
00073     }
00074 
00075   if (y <= 0.5F)
00076     { yi0 = 0; yi1 = 0; wy0 = 0.5F; wy1 = 0.5F; }
00077   else if (y >= (float)itsYSize-0.5F)
00078     { yi0 = itsYSize-1; yi1 = itsYSize-1; wy0 = 0.5F; wy1 = 0.5F; }
00079   else
00080     {
00081       const float yy = y - 0.5F;
00082       yi0 = int(yy); yi1 = yi0 + 1;
00083       wy1 = yy - float(yi0); wy0 = 1.0F - wy1;
00084     }
00085 
00086 
00087   // the situation is different for orientation as we wrap around:
00088   // orientation are now labeld 'z' for more general purpose
00089 
00090   if (itsWrapZ){
00091           //Wrap the Z around the itsZSize
00092           if (z <= 0.5F)
00093           {
00094                   zi0 = 0; zi1 = itsZSize-1;
00095                   wz0 = 0.5F + z; wz1 = 1.0F - wz0;
00096           }
00097           else if (z >= itsZSize-0.5F)
00098           {
00099                   zi0 = itsZSize-1; zi1 = 0;
00100                   wz0 = ((float)itsZSize+0.5F) - z; wz1 = 1.0F - wz0;
00101           }
00102           else
00103           {
00104                   const float zz = z - 0.5F;
00105                   zi0 = int(zz); zi1 = zi0 + 1;
00106                   wz1 = zz - float(zi0); wz0 = 1.0F - wz1;
00107           }
00108   } else {
00109           //Dont wrap z bin
00110           if (z <= 0.5F)
00111           {
00112                   zi0 = 0; zi1 = 0;
00113                   wz0 = 0.5F; wz1 =0.5F;
00114           }
00115           else if (z >= (float)itsZSize-0.5F)
00116           {
00117                   zi0 = itsZSize-1; zi1 = itsZSize-1;
00118                   wz0 = 0.5F; wz1 = 0.5F;
00119           }
00120           else
00121           {
00122                   const float zz = z - 0.5F;
00123                   zi0 = int(zz); zi1 = zi0 + 1;
00124                   wz1 = zz - float(zi0); wz0 = 1.0F - wz1;
00125           }
00126   }
00127 
00128   // convention: we add 1 for each unit of o (our fastest varying
00129   // index), then zSize for each unit of y, finally zSize*ySize for each unit of
00130   // x. Let's populate our 8 bins:
00131 
00132   //No more opt calc unless we informace the size of the bins
00133   //Hopfully the compiler will optemize powers of 2
00134   //xi0 <<= 5; xi1 <<= 5; yi0 <<= 3; yi1 <<= 3;
00135 
00136   xi0 *= itsZSize*itsYSize; xi1 *= itsZSize*itsYSize;
00137   yi0 *= itsZSize; yi1 *= itsZSize;
00138 
00139 
00140   itsFV[xi0 + yi0 + zi0] += value * wx0 * wy0 * wz0;
00141   itsFV[xi1 + yi0 + zi0] += value * wx1 * wy0 * wz0;
00142   itsFV[xi0 + yi1 + zi0] += value * wx0 * wy1 * wz0;
00143   itsFV[xi1 + yi1 + zi0] += value * wx1 * wy1 * wz0;
00144   itsFV[xi0 + yi0 + zi1] += value * wx0 * wy0 * wz1;
00145   itsFV[xi1 + yi0 + zi1] += value * wx1 * wy0 * wz1;
00146   itsFV[xi0 + yi1 + zi1] += value * wx0 * wy1 * wz1;
00147   itsFV[xi1 + yi1 + zi1] += value * wx1 * wy1 * wz1;
00148 
00149   //LINFO("%f,%f,%f -> %d-%d(%f) %d-%d(%f) %d-%d(%f)",
00150    //     x,y,o,xi0,xi1,wx0,yi0,yi1,wy0,oi0,oi1,wo0);
00151 }
00152 
00153 // ########################################################################
00154 void FeatureVector::normalize()
00155 {
00156   std::vector<float>::iterator ptr = itsFV.begin(), stop = itsFV.end();
00157 
00158   // compute sum of squares:
00159   float sq = 0.0f;
00160   while(ptr != stop) { sq += (*ptr) * (*ptr); ++ ptr; }
00161 
00162   // if too small to normalize, forget it:
00163   if (sq < 1.0e-10) return;
00164 
00165   // compute normalization factor:
00166   sq = 1.0F / sqrtf(sq);
00167 
00168   // normalize it:
00169   ptr = itsFV.begin();
00170   while(ptr != stop) *ptr++ *= sq;
00171 }
00172 
00173 // ########################################################################
00174 void FeatureVector::threshold(const float limit)
00175 {
00176   bool changed = false;
00177 
00178   std::vector<float>::iterator ptr = itsFV.begin(), stop = itsFV.end();
00179 
00180   while(ptr != stop)
00181     {
00182       if (*ptr > limit) { *ptr = limit; changed = true; }
00183       ++ ptr;
00184     }
00185 
00186   if (changed) normalize();
00187 }
00188 
00189 // ########################################################################
00190 float FeatureVector::getValue(const uint index) const
00191 {
00192   ASSERT(index < itsFV.size());
00193   return itsFV[index];
00194 }
00195 
00196 // ######################################################################
00197 void FeatureVector::toByteKey(std::vector<byte>& dest, float thresh, bool norm)
00198 {
00199   dest.resize(itsFV.size());
00200 
00201   // do normalization and thresholding:
00202 
00203   if (norm) normalize();
00204   if (thresh > -1) threshold(thresh);   //TODO: is -1 a good value to check for?
00205   if (norm) normalize();
00206 
00207   std::vector<float>::const_iterator src = itsFV.begin(), stop = itsFV.end();
00208   std::vector<byte>::iterator dst = dest.begin();
00209 
00210   while (src != stop) *dst++ = clamped_convert<byte>((*src++) * 512.0F);
00211 }
00212 
00213 // ######################################################################
00214 Image<PixRGB<byte> > FeatureVector::getFeatureVectorImage(std::vector<byte> &fv)
00215 {
00216 
00217 
00218   int WIDTH = 256;
00219   int HEIGHT = 256;
00220 
00221   Image<PixRGB<byte> > fvImg(WIDTH, HEIGHT, NO_INIT);
00222   fvImg.clear(PixRGB<byte>(255, 255, 255));
00223   int xBins = int((float)WIDTH/4);
00224   int yBins = int((float)HEIGHT/4);
00225 
00226   drawGrid(fvImg, xBins, yBins, 1, 1, PixRGB<byte>(0, 0, 0));
00227 
00228   for (int xx=0; xx<4; xx++){
00229     for (int yy=0; yy<4; yy++){
00230       for (int oo=0; oo<8; oo++){
00231         Point2D<int> loc(xBins/2+(xBins*xx), yBins/2+(yBins*yy));
00232         uint fv_i = xx*32+yy*8+oo;
00233         byte mag = 0;
00234         if (fv_i > fv.size())
00235           LFATAL("Invalid feture vector");
00236         else
00237           mag = fv[xx*32+yy*8+oo]/4;
00238         drawDisk(fvImg, loc, 2, PixRGB<byte>(255, 0, 0));
00239         drawLine(fvImg, loc,
00240             Point2D<int>(int(loc.i + mag*cosf(oo*M_PI/4)),
00241               int(loc.j + mag*sinf(oo*M_PI/4))),
00242             PixRGB<byte>(255, 0, 0));
00243       }
00244     }
00245   }
00246 
00247   return fvImg;
00248 }
00249 
00250 
00251 double FeatureVector::getMag()
00252 {
00253 
00254   double mag = 0;
00255   std::vector<float>::iterator ptr = itsFV.begin(), stop = itsFV.end();
00256 
00257   while(ptr != stop)
00258     {
00259       mag += (*ptr * *ptr);
00260       ++ ptr;
00261     }
00262 
00263   return sqrt(mag);
00264 
00265 }
00266 
00267 
00268 
00269 
00270 // ######################################################################
00271 /* So things look consistent in everyone's emacs... */
00272 /* Local Variables: */
00273 /* indent-tabs-mode: nil */
00274 /* End: */
Generated on Sun May 8 08:42:15 2011 for iLab Neuromorphic Vision Toolkit by  doxygen 1.6.3