00001 /*!@file Channels/TcorrChannel.C */ 00002 00003 // //////////////////////////////////////////////////////////////////// // 00004 // The iLab Neuromorphic Vision C++ Toolkit - Copyright (C) 2000-2005 // 00005 // by the University of Southern California (USC) and the iLab at USC. // 00006 // See http://iLab.usc.edu for information about this project. // 00007 // //////////////////////////////////////////////////////////////////// // 00008 // Major portions of the iLab Neuromorphic Vision Toolkit are protected // 00009 // under the U.S. patent ``Computation of Intrinsic Perceptual Saliency // 00010 // in Visual Environments, and Applications'' by Christof Koch and // 00011 // Laurent Itti, California Institute of Technology, 2001 (patent // 00012 // pending; application number 09/912,225 filed July 23, 2001; see // 00013 // http://pair.uspto.gov/cgi-bin/final/home.pl for current status). // 00014 // //////////////////////////////////////////////////////////////////// // 00015 // This file is part of the iLab Neuromorphic Vision C++ Toolkit. // 00016 // // 00017 // The iLab Neuromorphic Vision C++ Toolkit is free software; you can // 00018 // redistribute it and/or modify it under the terms of the GNU General // 00019 // Public License as published by the Free Software Foundation; either // 00020 // version 2 of the License, or (at your option) any later version. // 00021 // // 00022 // The iLab Neuromorphic Vision C++ Toolkit is distributed in the hope // 00023 // that it will be useful, but WITHOUT ANY WARRANTY; without even the // 00024 // implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR // 00025 // PURPOSE. See the GNU General Public License for more details. // 00026 // // 00027 // You should have received a copy of the GNU General Public License // 00028 // along with the iLab Neuromorphic Vision C++ Toolkit; if not, write // 00029 // to the Free Software Foundation, Inc., 59 Temple Place, Suite 330, // 00030 // Boston, MA 02111-1307 USA. // 00031 // //////////////////////////////////////////////////////////////////// // 00032 // 00033 // Primary maintainer for this file: 00034 // $HeadURL: svn://isvn.usc.edu/software/invt/trunk/saliency/src/Channels/TcorrChannel.C $ 00035 // $Id: TcorrChannel.C 9412 2008-03-10 23:10:15Z farhan $ 00036 // 00037 00038 #ifndef TCORRCHANNEL_C_DEFINED 00039 #define TCORRCHANNEL_C_DEFINED 00040 00041 #include "Channels/TcorrChannel.H" 00042 00043 #include "Channels/ChannelOpts.H" 00044 #include "Component/OptionManager.H" 00045 #include "Image/MathOps.H" 00046 00047 // ###################################################################### 00048 // Tcorr channel member definitions 00049 // ###################################################################### 00050 TcorrChannel::TcorrChannel(OptionManager& mgr) : 00051 SingleChannel(mgr, "Tcorr", "tcorr", TCORR, 00052 rutz::shared_ptr< PyrBuilder<float> >(NULL)), 00053 itsFrameLag(&OPT_TcorrChannelFrameLag, this), // see Channels/ChannelOpts.{H,C} 00054 itsCache(), itsMap() 00055 { } 00056 00057 // ###################################################################### 00058 TcorrChannel::~TcorrChannel() 00059 { } 00060 00061 // ###################################################################### 00062 bool TcorrChannel::outputAvailable() const 00063 { return (itsCache.size() == itsCache.getMaxSize()); } 00064 00065 // ###################################################################### 00066 void TcorrChannel::doInput(const InputFrame& inframe) 00067 { 00068 const LevelSpec ls = itsLevelSpec.getVal(); 00069 ASSERT(ls.levMin() == ls.levMax()); 00070 ASSERT(ls.delMin() == 0 && ls.delMax() == 0); 00071 ASSERT(ls.levMin() == ls.mapLevel()); 00072 ASSERT(inframe.grayFloat().initialized()); 00073 00074 // configure our cache if not done yet. We use one more frame in the 00075 // cache than the given lag, to hold our current frame: 00076 if (itsCache.getMaxSize() == 0) 00077 itsCache.setMaxSize(itsFrameLag.getVal() + 1); 00078 00079 // just push our incoming input. All computations are done in getOutput(): 00080 itsCache.push_back(inframe.grayFloat()); 00081 } 00082 00083 // ###################################################################### 00084 Image<float> TcorrChannel::getOutput() 00085 { 00086 // if cache not full yet, we should not be called since 00087 // outputAvailable() returns false: 00088 if (itsCache.size() < itsCache.getMaxSize()) 00089 { 00090 LERROR("I don't have an output yet -- RETURNING EMPTY"); 00091 return itsMap; // should be uninitialized 00092 } 00093 00094 // figure out the tile and map sizes: 00095 const Image<float> cur = itsCache.front(); 00096 const Image<float> old = itsCache.back(); 00097 00098 const LevelSpec ls = itsLevelSpec.getVal(); 00099 const uint lev = ls.mapLevel(); 00100 const int siz = 1 << lev; 00101 const int w = cur.getWidth(); 00102 const int h = cur.getHeight(); 00103 itsMap.resize(w >> lev, h >> lev); 00104 00105 // let's loop over the tiles and compute correlations: 00106 Image<float>::iterator dest = itsMap.beginw(); 00107 for (int j = 0; j <= h-siz; j += siz) 00108 { 00109 const int ph = std::min(j + siz, h) - j; 00110 for (int i = 0; i <= w-siz; i += siz) 00111 { 00112 const int pw = std::min(i + siz, w) - i; 00113 00114 // use corrpatch function of Image_MathOps, which returns 00115 // values in [-1 .. 1]. For this channel, we want high 00116 // 'salience' for patches that are highly decorrelated from 00117 // frame to frame. So in our map we store 1-correlation, 00118 // i.e., some measure of decorrelation: 00119 const Point2D<int> topleft(i, j); const Dims patchdims(pw, ph); 00120 00121 *dest++ = 1.0 - corrpatch(cur, topleft, patchdims, old, topleft); 00122 } 00123 } 00124 00125 return itsMap; 00126 } 00127 00128 00129 // ###################################################################### 00130 /* So things look consistent in everyone's emacs... */ 00131 /* Local Variables: */ 00132 /* indent-tabs-mode: nil */ 00133 /* End: */ 00134 00135 #endif // TCORRCHANNEL_C_DEFINED