test-LocalBinaryPatterns2.C

00001 /*!@file src/Features/test-LocalBinaryPatterns.C */
00002 
00003 // //////////////////////////////////////////////////////////////////// //
00004 // The iLab Neuromorphic Vision C++ Toolkit - Copyright (C) 2000-2005   //
00005 // by the University of Southern California (USC) and the iLab at USC.  //
00006 // See http://iLab.usc.edu for information about this project.          //
00007 // //////////////////////////////////////////////////////////////////// //
00008 // Major portions of the iLab Neuromorphic Vision Toolkit are protected //
00009 // under the U.S. patent ``Computation of Intrinsic Perceptual Saliency //
00010 // in Visual Environments, and Applications'' by Christof Koch and      //
00011 // Laurent Itti, California Institute of Technology, 2001 (patent       //
00012 // pending; application number 09/912,225 filed July 23, 2001; see      //
00013 // http://pair.uspto.gov/cgi-bin/final/home.pl for current status).     //
00014 // //////////////////////////////////////////////////////////////////// //
00015 // This file is part of the iLab Neuromorphic Vision C++ Toolkit.       //
00016 //                                                                      //
00017 // The iLab Neuromorphic Vision C++ Toolkit is free software; you can   //
00018 // redistribute it and/or modify it under the terms of the GNU General  //
00019 // Public License as published by the Free Software Foundation; either  //
00020 // version 2 of the License, or (at your option) any later version.     //
00021 //                                                                      //
00022 // The iLab Neuromorphic Vision C++ Toolkit is distributed in the hope  //
00023 // that it will be useful, but WITHOUT ANY WARRANTY; without even the   //
00024 // implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR      //
00025 // PURPOSE.  See the GNU General Public License for more details.       //
00026 //                                                                      //
00027 // You should have received a copy of the GNU General Public License    //
00028 // along with the iLab Neuromorphic Vision C++ Toolkit; if not, write   //
00029 // to the Free Software Foundation, Inc., 59 Temple Place, Suite 330,   //
00030 // Boston, MA 02111-1307 USA.                                           //
00031 // //////////////////////////////////////////////////////////////////// //
00032 //
00033 // Primary maintainer for this file: Dan Parks <danielfp@usc.edu>
00034 // $HeadURL$
00035 // $Id$
00036 //
00037 
00038 #include "Component/ModelManager.H"
00039 #include "Image/DrawOps.H"
00040 #include "Image/Kernels.H"
00041 #include "Image/CutPaste.H"
00042 #include "Image/ColorOps.H"
00043 #include "Image/FilterOps.H"
00044 #include "Raster/Raster.H"
00045 #include "Media/FrameSeries.H"
00046 #include "Util/Timer.H"
00047 #include "Util/CpuTimer.H"
00048 #include "Util/StringUtil.H"
00049 #include "Features/LocalBinaryPatterns.H"
00050 #include "Learn/LogLikelihoodClassifier.H"
00051 #include "Learn/SVMClassifier.H"
00052 #include "rutz/rand.h"
00053 #include "rutz/trace.h"
00054 
00055 #include <math.h>
00056 #include <fcntl.h>
00057 #include <limits>
00058 #include <string>
00059 
00060 #define TRAIN_WIDTH 160
00061 #define TRAIN_HEIGHT 160
00062 #define SAMPLE_WIDTH 160
00063 #define SAMPLE_HEIGHT 160
00064 
00065 #define TEST_SIZE 20
00066 
00067 #define USE_SVM 0 // Whether to use SVM (if not uses log likelihood classifier)
00068 
00069 int main(const int argc, const char **argv)
00070 {
00071 
00072   MYLOGVERB = LOG_INFO;
00073   ModelManager manager("Test LocalBinaryPatterns");
00074 
00075   // Create random number generator
00076   rutz::urand rgen(time((time_t*)0)+getpid());
00077 
00078   // Create log likelihood classifier and local binary patterns objects
00079   LogLikelihoodClassifier ll = LogLikelihoodClassifier(7);
00080   SVMClassifier svm = SVMClassifier();
00081   std::vector<LocalBinaryPatterns> lbp;
00082   //lbp.push_back(LocalBinaryPatterns(1,8,0,false,true));
00083   lbp.push_back(LocalBinaryPatterns(2,16,0,false,true));
00084   lbp.push_back(LocalBinaryPatterns(3,24,0,false,true));
00085 
00086   if (manager.parseCommandLine(
00087         (const int)argc, (const char**)argv, "<texture1file> ... <textureNfile>", 2, 200) == false)
00088     return 0;
00089 
00090   manager.start();
00091 
00092   uint numCategories = manager.numExtraArgs();
00093   std::vector<std::string> texFile;
00094   for(uint i=0;i<numCategories;i++)
00095     {
00096       texFile.push_back(manager.getExtraArg(i));
00097     }
00098 
00099   const Dims trainDims = Dims(TRAIN_WIDTH,TRAIN_HEIGHT);
00100   for(uint idx=0;idx<numCategories;idx++)
00101     {
00102       Image<float> tex = Raster::ReadGray(texFile[idx]);
00103       // Take disjoint crops from left side of textures to train as models
00104       float tw = std::min(TRAIN_WIDTH,int(tex.getWidth()/2.0));
00105       float th = std::min(TRAIN_HEIGHT,int(tex.getHeight()));
00106       for(uint xp=0;xp<=uint(tex.getWidth()/2.0-tw);xp+=tw)
00107         for(uint yp=0;yp<=uint(tex.getHeight()-th);yp+=th)
00108           {
00109             LINFO("Adding crop for id[%u] at pos [%ux%u]",idx,xp,yp);
00110             Image<float> samp = crop(tex,Rectangle(Point2D<int>(xp,yp),trainDims));
00111             for(uint o=0;o<lbp.size();o++)
00112               lbp[o].addModel(toRGB(samp),idx+1);
00113           }
00114     }
00115 
00116   // Build model
00117   std::vector<LocalBinaryPatterns::MapModelVector> allModels; 
00118   for(uint o=0;o<lbp.size();o++) 
00119     { 
00120       LINFO("Building variance model for LBP class [%u]",o);
00121       lbp[o].buildModels();
00122       allModels.push_back(lbp[o].getModels());
00123     }
00124   LocalBinaryPatterns::MapModelVector completeModel;
00125   lbp[0].combineModels(allModels,completeModel);
00126   if(USE_SVM)
00127     {
00128       std::vector<std::vector<float> > data;
00129       std::vector<float> labels;
00130       lbp[0].getLabeledData(completeModel,data,labels);
00131       svm.train(data,labels);
00132     }
00133   else
00134     {
00135       ll.setModels(completeModel);
00136     }
00137 
00138 
00139   int numCorrect=0;
00140   const Dims sampleDims = Dims(SAMPLE_WIDTH,SAMPLE_HEIGHT);
00141   // Take random crops from right side of texture to test models
00142   for(uint s=0;s<TEST_SIZE;s++)
00143     {
00144       // Pick a random texture
00145       int idx = rgen.idraw(numCategories);
00146       Image<float> tex = Raster::ReadGray(texFile[idx]);
00147       // Select crop from the right side of the textures to test
00148       float tw = std::min(SAMPLE_WIDTH,int(tex.getWidth()/2.0));
00149       float th = std::min(SAMPLE_HEIGHT,int(tex.getHeight()));
00150       int xp,yp;
00151       xp=rgen.idraw_range(tex.getWidth()/2.0,int(tex.getWidth()-tw));
00152       yp=rgen.idraw_range(0,int(tex.getHeight()-th));
00153       Image<float> samp = crop(tex,Rectangle(Point2D<int>(xp,yp),sampleDims));
00154       // Load crop
00155       std::vector<float> hist;
00156       for(uint o=0;o<lbp.size();o++)
00157         {
00158           std::vector<float> tmpHist = lbp[o].createHistogram(samp);
00159           hist.insert(hist.begin(),tmpHist.begin(),tmpHist.end());
00160         }
00161       int gtIdx = idx+1;
00162       int predIdx;
00163       if(USE_SVM)
00164         {
00165           predIdx = (int) svm.predict(hist);
00166         }
00167       else
00168         predIdx = ll.predict(hist);
00169       LINFO("Index Ground Truth [%d], Predicted [%d]",gtIdx,predIdx);
00170       if(predIdx == gtIdx) numCorrect++;
00171     }
00172   LINFO("Test Accuracy %f, Random chance would be %f",float(numCorrect)/TEST_SIZE,1.0F/numCategories);
00173   manager.stop();
00174 
00175 }
00176 
00177 
00178 
00179 // ######################################################################
00180 /* So things look consistent in everyone's emacs... */
00181 /* Local Variables: */
00182 /* indent-tabs-mode: nil */
00183 /* End: */
00184 
00185 
00186 
Generated on Sun May 8 08:40:39 2011 for iLab Neuromorphic Vision Toolkit by  doxygen 1.6.3