00001 /*!@file src/Features/test-LocalBinaryPatterns.C */ 00002 00003 // //////////////////////////////////////////////////////////////////// // 00004 // The iLab Neuromorphic Vision C++ Toolkit - Copyright (C) 2000-2005 // 00005 // by the University of Southern California (USC) and the iLab at USC. // 00006 // See http://iLab.usc.edu for information about this project. // 00007 // //////////////////////////////////////////////////////////////////// // 00008 // Major portions of the iLab Neuromorphic Vision Toolkit are protected // 00009 // under the U.S. patent ``Computation of Intrinsic Perceptual Saliency // 00010 // in Visual Environments, and Applications'' by Christof Koch and // 00011 // Laurent Itti, California Institute of Technology, 2001 (patent // 00012 // pending; application number 09/912,225 filed July 23, 2001; see // 00013 // http://pair.uspto.gov/cgi-bin/final/home.pl for current status). // 00014 // //////////////////////////////////////////////////////////////////// // 00015 // This file is part of the iLab Neuromorphic Vision C++ Toolkit. // 00016 // // 00017 // The iLab Neuromorphic Vision C++ Toolkit is free software; you can // 00018 // redistribute it and/or modify it under the terms of the GNU General // 00019 // Public License as published by the Free Software Foundation; either // 00020 // version 2 of the License, or (at your option) any later version. // 00021 // // 00022 // The iLab Neuromorphic Vision C++ Toolkit is distributed in the hope // 00023 // that it will be useful, but WITHOUT ANY WARRANTY; without even the // 00024 // implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR // 00025 // PURPOSE. See the GNU General Public License for more details. // 00026 // // 00027 // You should have received a copy of the GNU General Public License // 00028 // along with the iLab Neuromorphic Vision C++ Toolkit; if not, write // 00029 // to the Free Software Foundation, Inc., 59 Temple Place, Suite 330, // 00030 // Boston, MA 02111-1307 USA. // 00031 // //////////////////////////////////////////////////////////////////// // 00032 // 00033 // Primary maintainer for this file: Dan Parks <danielfp@usc.edu> 00034 // $HeadURL$ 00035 // $Id$ 00036 // 00037 00038 #include "Component/ModelManager.H" 00039 #include "Image/DrawOps.H" 00040 #include "Image/Kernels.H" 00041 #include "Image/CutPaste.H" 00042 #include "Image/ColorOps.H" 00043 #include "Image/FilterOps.H" 00044 #include "Raster/Raster.H" 00045 #include "Media/FrameSeries.H" 00046 #include "Util/Timer.H" 00047 #include "Util/CpuTimer.H" 00048 #include "Util/StringUtil.H" 00049 #include "Features/LocalBinaryPatterns.H" 00050 #include "Learn/LogLikelihoodClassifier.H" 00051 #include "Learn/SVMClassifier.H" 00052 #include "rutz/rand.h" 00053 #include "rutz/trace.h" 00054 00055 #include <math.h> 00056 #include <fcntl.h> 00057 #include <limits> 00058 #include <string> 00059 00060 #define TRAIN_WIDTH 160 00061 #define TRAIN_HEIGHT 160 00062 #define SAMPLE_WIDTH 160 00063 #define SAMPLE_HEIGHT 160 00064 00065 #define TEST_SIZE 20 00066 00067 #define USE_SVM 0 // Whether to use SVM (if not uses log likelihood classifier) 00068 00069 int main(const int argc, const char **argv) 00070 { 00071 00072 MYLOGVERB = LOG_INFO; 00073 ModelManager manager("Test LocalBinaryPatterns"); 00074 00075 // Create random number generator 00076 rutz::urand rgen(time((time_t*)0)+getpid()); 00077 00078 // Create log likelihood classifier and local binary patterns objects 00079 LogLikelihoodClassifier ll = LogLikelihoodClassifier(7); 00080 SVMClassifier svm = SVMClassifier(); 00081 std::vector<LocalBinaryPatterns> lbp; 00082 //lbp.push_back(LocalBinaryPatterns(1,8,0,false,true)); 00083 lbp.push_back(LocalBinaryPatterns(2,16,0,false,true)); 00084 lbp.push_back(LocalBinaryPatterns(3,24,0,false,true)); 00085 00086 if (manager.parseCommandLine( 00087 (const int)argc, (const char**)argv, "<texture1file> ... <textureNfile>", 2, 200) == false) 00088 return 0; 00089 00090 manager.start(); 00091 00092 uint numCategories = manager.numExtraArgs(); 00093 std::vector<std::string> texFile; 00094 for(uint i=0;i<numCategories;i++) 00095 { 00096 texFile.push_back(manager.getExtraArg(i)); 00097 } 00098 00099 const Dims trainDims = Dims(TRAIN_WIDTH,TRAIN_HEIGHT); 00100 for(uint idx=0;idx<numCategories;idx++) 00101 { 00102 Image<float> tex = Raster::ReadGray(texFile[idx]); 00103 // Take disjoint crops from left side of textures to train as models 00104 float tw = std::min(TRAIN_WIDTH,int(tex.getWidth()/2.0)); 00105 float th = std::min(TRAIN_HEIGHT,int(tex.getHeight())); 00106 for(uint xp=0;xp<=uint(tex.getWidth()/2.0-tw);xp+=tw) 00107 for(uint yp=0;yp<=uint(tex.getHeight()-th);yp+=th) 00108 { 00109 LINFO("Adding crop for id[%u] at pos [%ux%u]",idx,xp,yp); 00110 Image<float> samp = crop(tex,Rectangle(Point2D<int>(xp,yp),trainDims)); 00111 for(uint o=0;o<lbp.size();o++) 00112 lbp[o].addModel(toRGB(samp),idx+1); 00113 } 00114 } 00115 00116 // Build model 00117 std::vector<LocalBinaryPatterns::MapModelVector> allModels; 00118 for(uint o=0;o<lbp.size();o++) 00119 { 00120 LINFO("Building variance model for LBP class [%u]",o); 00121 lbp[o].buildModels(); 00122 allModels.push_back(lbp[o].getModels()); 00123 } 00124 LocalBinaryPatterns::MapModelVector completeModel; 00125 lbp[0].combineModels(allModels,completeModel); 00126 if(USE_SVM) 00127 { 00128 std::vector<std::vector<float> > data; 00129 std::vector<float> labels; 00130 lbp[0].getLabeledData(completeModel,data,labels); 00131 svm.train(data,labels); 00132 } 00133 else 00134 { 00135 ll.setModels(completeModel); 00136 } 00137 00138 00139 int numCorrect=0; 00140 const Dims sampleDims = Dims(SAMPLE_WIDTH,SAMPLE_HEIGHT); 00141 // Take random crops from right side of texture to test models 00142 for(uint s=0;s<TEST_SIZE;s++) 00143 { 00144 // Pick a random texture 00145 int idx = rgen.idraw(numCategories); 00146 Image<float> tex = Raster::ReadGray(texFile[idx]); 00147 // Select crop from the right side of the textures to test 00148 float tw = std::min(SAMPLE_WIDTH,int(tex.getWidth()/2.0)); 00149 float th = std::min(SAMPLE_HEIGHT,int(tex.getHeight())); 00150 int xp,yp; 00151 xp=rgen.idraw_range(tex.getWidth()/2.0,int(tex.getWidth()-tw)); 00152 yp=rgen.idraw_range(0,int(tex.getHeight()-th)); 00153 Image<float> samp = crop(tex,Rectangle(Point2D<int>(xp,yp),sampleDims)); 00154 // Load crop 00155 std::vector<float> hist; 00156 for(uint o=0;o<lbp.size();o++) 00157 { 00158 std::vector<float> tmpHist = lbp[o].createHistogram(samp); 00159 hist.insert(hist.begin(),tmpHist.begin(),tmpHist.end()); 00160 } 00161 int gtIdx = idx+1; 00162 int predIdx; 00163 if(USE_SVM) 00164 { 00165 predIdx = (int) svm.predict(hist); 00166 } 00167 else 00168 predIdx = ll.predict(hist); 00169 LINFO("Index Ground Truth [%d], Predicted [%d]",gtIdx,predIdx); 00170 if(predIdx == gtIdx) numCorrect++; 00171 } 00172 LINFO("Test Accuracy %f, Random chance would be %f",float(numCorrect)/TEST_SIZE,1.0F/numCategories); 00173 manager.stop(); 00174 00175 } 00176 00177 00178 00179 // ###################################################################### 00180 /* So things look consistent in everyone's emacs... */ 00181 /* Local Variables: */ 00182 /* indent-tabs-mode: nil */ 00183 /* End: */ 00184 00185 00186