00001 /*!@file CUDA/CudaKernels.C C++ wrapper for CUDA Kernel generation */ 00002 00003 // //////////////////////////////////////////////////////////////////// // 00004 // The iLab Neuromorphic Vision C++ Toolkit - Copyright (C) 2000-2005 // 00005 // by the University of Southern California (USC) and the iLab at USC. // 00006 // See http://iLab.usc.edu for information about this project. // 00007 // //////////////////////////////////////////////////////////////////// // 00008 // Major portions of the iLab Neuromorphic Vision Toolkit are protected // 00009 // under the U.S. patent ``Computation of Intrinsic Perceptual Saliency // 00010 // in Visual Environments, and Applications'' by Christof Koch and // 00011 // Laurent Itti, California Institute of Technology, 2001 (patent // 00012 // pending; application number 09/912,225 filed July 23, 2001; see // 00013 // http://pair.uspto.gov/cgi-bin/final/home.pl for current status). // 00014 // //////////////////////////////////////////////////////////////////// // 00015 // This file is part of the iLab Neuromorphic Vision C++ Toolkit. // 00016 // // 00017 // The iLab Neuromorphic Vision C++ Toolkit is free software; you can // 00018 // redistribute it and/or modify it under the terms of the GNU General // 00019 // Public License as published by the Free Software Foundation; either // 00020 // version 2 of the License, or (at your option) any later version. // 00021 // // 00022 // The iLab Neuromorphic Vision C++ Toolkit is distributed in the hope // 00023 // that it will be useful, but WITHOUT ANY WARRANTY; without even the // 00024 // implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR // 00025 // PURPOSE. See the GNU General Public License for more details. // 00026 // // 00027 // You should have received a copy of the GNU General Public License // 00028 // along with the iLab Neuromorphic Vision C++ Toolkit; if not, write // 00029 // to the Free Software Foundation, Inc., 59 Temple Place, Suite 330, // 00030 // Boston, MA 02111-1307 USA. // 00031 // //////////////////////////////////////////////////////////////////// // 00032 // 00033 // Primary maintainer for this file: 00034 // $HeadURL: svn://isvn.usc.edu/software/invt/trunk/saliency/src/CUDA/CudaKernels.C $ 00035 // $Id: CudaKernels.C 12962 2010-03-06 02:13:53Z irock $ 00036 // 00037 00038 00039 #include "CUDA/CudaImage.H" 00040 #include "CUDA/CudaMathOps.H" 00041 #include "Util/Assert.H" 00042 #include "CUDA/cudadefs.h" 00043 #include "CudaKernels.H" 00044 #include "CudaDevices.H" 00045 #include "wrap_c_cuda.h" 00046 00047 00048 // ###################################################################### 00049 CudaImage<float> cudaDogFilterHmax(MemoryPolicy mp, int dev, const float theta, const float gamma, const int size, const float div) 00050 { 00051 // Ensure that we are on a CUDA device 00052 ASSERT(mp != HOST_MEMORY); 00053 00054 // resize the data buffer 00055 CudaImage<float> dest(size, size, NO_INIT,mp,dev); 00056 Dims tile = CudaDevices::getDeviceTileSize(dev); 00057 cuda_c_dogFilterHmax(dest.getCudaArrayPtr(), theta, gamma, size, div, tile.w(),tile.h()); 00058 return dest; 00059 } 00060 00061 CudaImage<float> cudaDogFilter(MemoryPolicy mp, int dev, const float stddev, const float theta, const int halfsize_in) 00062 { 00063 // Ensure that we are on a CUDA device 00064 ASSERT(mp != HOST_MEMORY); 00065 00066 // resize the data buffer 00067 int halfsize = halfsize_in; 00068 if (halfsize <= 0) halfsize = int(ceil(stddev * sqrt(7.4F))); 00069 int size = 2*halfsize+1; 00070 CudaImage<float> dest(size,size, NO_INIT,mp,dev); 00071 Dims tile = CudaDevices::getDeviceTileSize(dev); 00072 cuda_c_dogFilter(dest.getCudaArrayPtr(),stddev,theta,halfsize,size,tile.w(),tile.h()); 00073 return dest; 00074 } 00075 00076 00077 // ###################################################################### 00078 // On CUDA device produces a Gabor kernel with optionally unequal major+minor axis lengths. 00079 CudaImage<float> cudaGaborFilter3(MemoryPolicy mp, int dev, const float major_stddev, const float minor_stddev, 00080 const float period, const float phase, 00081 const float theta, int size) 00082 { 00083 // Ensure that we are on a CUDA device 00084 ASSERT(mp != HOST_MEMORY); 00085 const float max_stddev = 00086 major_stddev > minor_stddev ? major_stddev : minor_stddev; 00087 00088 // figure the proper size for the result 00089 if (size == -1) size = int(ceil(max_stddev * sqrt(-2.0F * log(exp(-5.0F))))); 00090 else size = size/2; 00091 00092 CudaImage<float> result = CudaImage<float>(2 * size + 1, 2 * size + 1,NO_INIT,mp,dev); 00093 CudaImage<float> avg; 00094 Dims tile = CudaDevices::getDeviceTileSize1D(dev); 00095 cuda_c_gaborFilter3(result.getCudaArrayPtr(),major_stddev,minor_stddev,period,phase,theta,size,tile.sz(),result.size()); 00096 cudaGetAvg(result,avg); 00097 result -= avg; 00098 return result; 00099 } 00100 00101 // ###################################################################### 00102 CudaImage<float> cudaGaussian(MemoryPolicy mp, int dev, const float coeff, const float sigma, 00103 const int maxhw, const float threshperc) 00104 { 00105 // Ensure that we are on a CUDA device 00106 ASSERT(mp != HOST_MEMORY); 00107 00108 // determine size: keep only values larger that threshperc*max (here max=1) 00109 int hw = (int)(sigma * sqrt(-2.0F * log(threshperc / 100.0F))); 00110 00111 // if kernel turns out to be too large, cut it off: 00112 if (maxhw > 0 && hw > maxhw) hw = maxhw; 00113 00114 // allocate image for result: 00115 CudaImage<float> result = CudaImage<float>(2 * hw + 1, 1,NO_INIT,mp,dev); 00116 Dims tile = CudaDevices::getDeviceTileSize1D(dev); 00117 // if coeff is given as 0, compute it from sigma: 00118 float c = coeff; 00119 if (coeff == 0.0F) c = 1.0F / (sigma * sqrtf(2.0f * float(M_PI))); 00120 const float sig22 = - 0.5F / (sigma * sigma); 00121 cuda_c_gaussian(result.getCudaArrayPtr(),c,sig22,hw,tile.sz(),result.size()); 00122 return result; 00123 } 00124 00125