CINNICstatsRun.C

Go to the documentation of this file.
00001 /*!@file CINNIC/CINNICstatsRun.C run anal. of CINNIC */
00002 
00003 // //////////////////////////////////////////////////////////////////// //
00004 // The iLab Neuromorphic Vision C++ Toolkit - Copyright (C) 2000-2003   //
00005 // by the University of Southern California (USC) and the iLab at USC.  //
00006 // See http://iLab.usc.edu for information about this project.          //
00007 // //////////////////////////////////////////////////////////////////// //
00008 // Major portions of the iLab Neuromorphic Vision Toolkit are protected //
00009 // under the U.S. patent ``Computation of Intrinsic Perceptual Saliency //
00010 // in Visual Environments, and Applications'' by Christof Koch and      //
00011 // Laurent Itti, California Institute of Technology, 2001 (patent       //
00012 // pending; application number 09/912,225 filed July 23, 2001; see      //
00013 // http://pair.uspto.gov/cgi-bin/final/home.pl for current status).     //
00014 // //////////////////////////////////////////////////////////////////// //
00015 // This file is part of the iLab Neuromorphic Vision C++ Toolkit.       //
00016 //                                                                      //
00017 // The iLab Neuromorphic Vision C++ Toolkit is free software; you can   //
00018 // redistribute it and/or modify it under the terms of the GNU General  //
00019 // Public License as published by the Free Software Foundation; either  //
00020 // version 2 of the License, or (at your option) any later version.     //
00021 //                                                                      //
00022 // The iLab Neuromorphic Vision C++ Toolkit is distributed in the hope  //
00023 // that it will be useful, but WITHOUT ANY WARRANTY; without even the   //
00024 // implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR      //
00025 // PURPOSE.  See the GNU General Public License for more details.       //
00026 //                                                                      //
00027 // You should have received a copy of the GNU General Public License    //
00028 // along with the iLab Neuromorphic Vision C++ Toolkit; if not, write   //
00029 // to the Free Software Foundation, Inc., 59 Temple Place, Suite 330,   //
00030 // Boston, MA 02111-1307 USA.                                           //
00031 // //////////////////////////////////////////////////////////////////// //
00032 //
00033 // Primary maintainer for this file: Laurent Itti <itti@usc.edu>
00034 // $HeadURL: svn://isvn.usc.edu/software/invt/trunk/saliency/src/CINNIC/CINNICstatsRun.C $
00035 // $Id: CINNICstatsRun.C 14376 2011-01-11 02:44:34Z pez $
00036 //
00037 
00038 // ############################################################
00039 // ############################################################
00040 // ##### ---CINNIC---
00041 // ##### Contour Integration:
00042 // ##### T. Nathan Mundhenk nathan@mundhenk.com
00043 // ############################################################
00044 // ############################################################
00045 #include "CINNIC/CINNICstatsRun.H"
00046 
00047 #include "Util/Assert.H"
00048 #include "Image/DrawOps.H"
00049 #include "Image/MathOps.H"
00050 #include "Image/Transforms.H"
00051 
00052 #include <fstream>
00053 
00054 CINNICstatsRun::CINNICstatsRun()
00055 {
00056 }
00057 
00058 CINNICstatsRun::~CINNICstatsRun()
00059 {
00060 }
00061 
00062 
00063 
00064 void CINNICstatsRun::setConfig(readConfig &config, readConfig &config2)
00065 {
00066   /* FORMAT...
00067      iterations = (int)config.getItemValueF("iterations");
00068      ...
00069   */
00070   LINFO("READING CONFIG VALUES");
00071   decSize = (int)config.getItemValueF("decSize");
00072   unEvenDec = (int)config.getItemValueF("unEvenDec");
00073   lowThresh = (int)config.getItemValueF("lowThresh");
00074   highThresh = (int)config.getItemValueF("highThresh");
00075   chopVal = (int)config.getItemValueF("chopVal");
00076   pointsNum = (int)config.getItemValueF("pointsNum");
00077   circRad = (int)config.getItemValueF("circRad");
00078   floodThresh = config.getItemValueF("floodThresh");
00079   floodVal = config.getItemValueF("floodVal");
00080   qualityImage = (int)config.getItemValueF("qualityImage");
00081   qChop = (int)config.getItemValueF("qChop");
00082   doResize = (int)config.getItemValueF("doResize");
00083   rankThresh = (int)config.getItemValueF("rankThresh");
00084   preProcessPNF = (int)config.getItemValueF("preProcessPNF");
00085   useDrawDisk = (int)config.getItemValueF("useDrawDisk");
00086   diskSize = (int)config.getItemValueF("diskSize");
00087   statsFile = config.getItemValueS("statsFile");
00088   monoColor = (int)config.getItemValueF("monoColor");
00089   PSError = config2.getItemValueF("PSError");
00090   centerOffset = (int)config.getItemValueF("centerOffset");
00091   edgeAtten = (int)config.getItemValueF("edgeAtten");
00092 }
00093 
00094 void CINNICstatsRun::setStuff(readConfig &fileList)
00095 {
00096   tempImage1c.resize(1,1);
00097   tempImage2.resize(1,1);
00098   salMap.resize(1,1);
00099   point2D = new Point2D<int>;
00100   pointVec.resize(5,*point2D);
00101   maxPointList.resize(fileList.itemCount(),pointVec);
00102   postChamferVal.resize(fileList.itemCount(),0.0F);
00103   errorCount.resize(fileList.itemCount(),0);
00104   totCount.resize(fileList.itemCount(),0);
00105   totalVal.resize(fileList.itemCount(),0.0F);
00106   errorRatio.resize(fileList.itemCount(),0.0F);
00107   testMean.resize(fileList.itemCount(),0.0F);
00108   testStd.resize(fileList.itemCount(),0.0F);
00109   compMean.resize(fileList.itemCount(),0.0F);
00110   compStd.resize(fileList.itemCount(),0.0F);
00111   regression.resize(fileList.itemCount(),0.0F);
00112   eucDist.resize(fileList.itemCount(),0.0F);
00113   pointsFound.resize(fileList.itemCount(),0);
00114   pointsFoundNum.resize(pointsNum,0);
00115   pointRank.resize(fileList.itemCount(),-1);
00116   pointRankNum.resize(pointsNum,0);
00117   candPixels.resize(pointsNum,0);
00118   realPixels.resize(pointsNum,0);
00119   strikeP.resize(pointsNum,0.0F);
00120   bernoulliP.resize(pointsNum,0.0F);
00121   totalErrorRatio = 0;  maxMean = 0; minMean = 1;
00122   totEucDist = 0; maxEuc = 0 ; minEuc = 1;
00123   totReg = 0; maxReg = 0; minReg = 1;
00124   zeroCount = 0;
00125   foundTotal = 0.0F; rankTotal = 0.0F;
00126   foundMean = 0.0F; rankMean = 0.0F;
00127 }
00128 
00129 void CINNICstatsRun::setStuff()
00130 {
00131   tempImage1c.resize(1,1);
00132   tempImage2.resize(1,1);
00133   salMap.resize(1,1);
00134   point2D = new Point2D<int>;
00135   pointVec.resize(5,*point2D);
00136   pointRankNum.resize(pointsNum,0);
00137   totalErrorRatio = 0;  maxMean = 0; minMean = 1;
00138   totEucDist = 0; maxEuc = 0 ; minEuc = 1;
00139   totReg = 0; maxReg = 0; minReg = 1;
00140   zeroCount = 0;
00141   foundTotal = 0.0F; rankTotal = 0.0F;
00142   foundMean = 0.0F; rankMean = 0.0F;
00143   pointsFoundNum.resize(pointsNum,0);
00144 }
00145 
00146 void CINNICstatsRun::runStandardStats(readConfig &fileList)
00147 {
00148   //! point2D object
00149   //Point2D<int> *point2D = new Point2D<int>();
00150   imageCount = fileList.itemCount();
00151   const char* inCompImage;
00152 
00153   //iterate over each image pair
00154   for(int i = 0; fileList.readFileTrue(i); i++)
00155   {
00156     // pair must exist
00157     LINFO("PAIR %d",i);
00158     // get names of images from file list using readConfig
00159     fileList.readFileValueNameC(i);
00160     inCompImage = fileList.readFileValueC(i);
00161     // read the images
00162     tempImage1c = Raster::ReadRGB(fileList.readFileValueNameC(i), RASFMT_PNM);
00163     LINFO("DONE");
00164     tempImage2 = Raster::ReadGray(fileList.readFileValueC(i), RASFMT_PNM);
00165     LINFO("DONE");
00166     // Make sure they are good
00167     checkSize();
00168 
00169     // format them
00170     tempImage1cf = tempImage1c;
00171     testImage = luminance(tempImage1cf);
00172     inplaceAttenuateBorders(testImage, edgeAtten);
00173     compImage = tempImage2;
00174     //Raster::VisuFloat(testImage, FLOAT_NORM_0_255, sformat("foo.%d.pgm",i));
00175     //Raster::VisuFloat(compImage, FLOAT_NORM_0_255, sformat("bar.%d.pgm",i));
00176     preProcess();
00177 
00178     //Calculate basic stats
00179     testImageVector.assign(testImage.begin(), testImage.end());
00180     compImageVector.assign(compImage.begin(), compImage.end());
00181     testMean[i] = Stats.mean(testImageVector);
00182     testStd[i] = Stats.findS(testImageVector,testMean[i]);
00183     LINFO("testMean is %f std %f",testMean[i],testStd[i]);
00184     compMean[i] = Stats.mean(compImageVector);
00185     compStd[i] = Stats.findS(compImageVector,compMean[i]);
00186     LINFO("compMean is %f std %f",compMean[i],compStd[i]);
00187     regression[i] = Stats.rRegression(testImageVector,compImageVector);
00188 
00189 
00190     // Find the euclidian distance between images
00191     for(int x = 0; x < testImage.getWidth(); x++)
00192     {
00193       for(int y = 0; y < testImage.getHeight(); y++)
00194       {
00195         eucDist[i] += pow((testImage.getVal(x,y) - compImage.getVal(x,y)),2);
00196       }
00197     }
00198 
00199     //choped for ease of use
00200     float hold  = (1.0F/(testImage.getWidth()*testImage.getHeight()));
00201     eucDist[i] = hold*sqrt(eucDist[i]);
00202 
00203     // polarize pixels to either 0 or 255 based on mean
00204     for(int x = 0; x < testImage.getWidth(); x++)
00205     {
00206       for(int y = 0; y < testImage.getHeight(); y++)
00207       {
00208         if(testImage.getVal(x,y) < testMean[i])
00209         {
00210           testImage.setVal(x,y,0.0F);
00211         }
00212         else
00213         {
00214           testImage.setVal(x,y,254.0F);
00215         }
00216       }
00217     }
00218 
00219     //Raster::VisuFloat(compImage, FLOAT_NORM_0_255, sformat("bar3.%d.pgm",i));
00220 
00221     //LEVITY I DEMAND LEVITY
00222 
00223     //Raster::VisuFloat(testImage, FLOAT_NORM_0_255, sformat("foo.%d.pgm",i));
00224     //Raster::VisuFloat(compImage, FLOAT_NORM_0_255, sformat("bar.%d.pgm",i));
00225     //compImage = rescale(compImage,decSize,decSize);
00226     //testImage = rescale(testImage,decSize,decSize);
00227     //totCount[i] = 0;
00228     //errorCount[i] = 0;
00229 
00230     // count for error pixels
00231     for(int x = 0; x < compImage.getWidth(); x++)
00232     {
00233       for(int y = 0; y < compImage.getHeight(); y++)
00234       {
00235         if(testImage.getVal(x,y) > 1)
00236         {
00237           totCount[i]++;
00238           if(compImage.getVal(x,y) < 1)
00239           {
00240             errorCount[i]++;
00241           }
00242         }
00243       }
00244     }
00245     //float avg = totalVal[i]/(compImage.getWidth()*compImage.getHeight());
00246     if((errorCount[i] != 0) && (totCount[i] != 0))
00247     {
00248       errorRatio[i] = (float)errorCount[i]/(float)totCount[i];
00249     }
00250     else
00251     {
00252       errorRatio[i] = 0.0F;
00253       zeroCount++;
00254     }
00255 
00256     LINFO("Error count for %s is %d",inCompImage,errorCount[i]);
00257     LINFO("Total count for %s is %d",inCompImage,totCount[i]);
00258     LINFO("Error Ratio is %f",errorRatio[i]);
00259     LINFO("Euclidian distance is %f", eucDist[i]);
00260     LINFO("Regression %f",regression[i]);
00261     //sum stats
00262     totEucDist += eucDist[i];
00263     totalErrorRatio += errorRatio[i];
00264     totReg += regression[i];
00265     //find max and min values
00266     if(eucDist[i] > maxEuc){maxEuc = eucDist[i];}
00267     if(eucDist[i] < minEuc){minEuc = eucDist[i];}
00268     if(errorRatio[i] > maxMean){maxMean = errorRatio[i];}
00269     if(errorRatio[i] < minMean){minMean = errorRatio[i];}
00270     if(regression[i] > maxReg){maxReg = regression[i];}
00271     if(regression[i] < minReg){minReg = regression[i];}
00272   }
00273   meanEucDist = totEucDist/imageCount;
00274   totalMeanError = totalErrorRatio/(imageCount-zeroCount);
00275   meanReg = totReg/imageCount;
00276 
00277   stdEucDist = dStats.findS(eucDist, meanEucDist);
00278   totalStdError = Stats.findS(errorRatio, totalMeanError);
00279   stdReg = Stats.findS(regression, meanReg);
00280 
00281   LINFO("Total Images Run %d",imageCount);
00282   LINFO("Total Error Ratio %f",totalErrorRatio);
00283   LINFO("Total Mean Error %f :S %f",totalMeanError,totalStdError);
00284   LINFO("Max %f Min %f",maxMean,minMean);
00285   LINFO("Total Mean Euclidian Distance %f :S %f",meanEucDist,stdEucDist);
00286   LINFO("Max %f Min %f",maxEuc,minEuc);
00287   LINFO("Total Mean Regression %f :S %f",meanReg,stdReg);
00288   LINFO("Max %f Min %f",maxReg,minReg);
00289   LINFO("Zero Count %d",zeroCount);
00290 }
00291 
00292 void CINNICstatsRun::runPointAndFlood(readConfig &fileList,const char* param)
00293 {
00294   std::ofstream outfile(statsFile.c_str(),std::ios::app);
00295   //while images to be read
00296   LINFO("STARTING Point and Flood");
00297   int N = 0;
00298   for(int i = 0; fileList.readFileTrue(i); i++)
00299   {
00300     maskImage.resize(compImage.getWidth(),compImage.getHeight(),true);
00301     N = i;
00302     fileList.readFileValueC(i);
00303     fileList.readFileValueNameC(i);
00304     // read the images
00305     tempImage1c = Raster::ReadRGB(fileList.readFileValueNameC(i), RASFMT_PNM);
00306     //LINFO("DONE");
00307     tempImage2 = Raster::ReadGray(fileList.readFileValueC(i), RASFMT_PNM);
00308     //LINFO("DONE");
00309     // Make sure they are good
00310     checkSize();
00311     // format them
00312     tempImage1cf = tempImage1c;
00313     testImage = luminance(tempImage1cf);
00314     inplaceAttenuateBorders(testImage, edgeAtten);
00315     compImage = tempImage2;
00316     salMap.resize(tempImage1c.getWidth(),tempImage1c.getHeight());
00317     outImageTemplate = compImage;
00318     outImageSource = testImage;
00319     //pixRGB.setGreen(128);
00320     //pixRGB.setBlue(0);
00321     //int setter = 255/pointsNum;
00322 
00323     if(preProcessPNF == 1)
00324       preProcess();
00325 
00326     //find salient points, circle them on any outimage, then flood out, repete
00327     pointAndFlood(fileList.readFileValueNameC(i),i,false);
00328   }
00329 
00330   for(int n = 0; n < pointsNum; n++)
00331   {
00332     strikeP[n] = (float)candPixels[n]/(float)realPixels[n];
00333     candPixels[n] = candPixels[n]/N;
00334     realPixels[n] = realPixels[n]/N;
00335     //strikeP[n] = strikeP[n];
00336     if(n > 0)
00337     {
00338       bernoulliP[n] = (1-bernoulliP[n-1])*strikeP[n] + bernoulliP[n-1];
00339     }
00340     else
00341     {
00342       bernoulliP[n] = strikeP[n];
00343     }
00344   }
00345 
00346   rankMean = rankTotal/N;
00347   rankSTD = Stats.findS(pointRank,rankMean);
00348   foundMean = foundTotal/N;
00349   foundSTD = Stats.findS(pointsFound,foundMean);
00350 
00351   LINFO("#################FINAL#################");
00352   LINFO("rank mean %f std %f",rankMean,rankSTD);
00353   LINFO("found mean %f std %f",foundMean,foundSTD);
00354   outfile << param << "\t";
00355   outfile << rankMean << "\t" << rankSTD << "\t";
00356   outfile << foundMean << "\t" << foundSTD << "\t";
00357   for(int i = 0; i < pointsNum; i++)
00358   {
00359     LINFO("AT rank %d = %d",i,pointRankNum[i]);
00360     outfile << pointRankNum[i] << "\t";
00361   }
00362   for(int i = 0; i <= pointsNum; i++)
00363   {
00364     LINFO("FOUND number %d = %d",i,pointsFoundNum[i]);
00365     outfile << pointsFoundNum[i] << "\t";
00366   }
00367   LINFO("General Stats:");
00368   for(int i = 0; i < pointsNum; i++)
00369   {
00370     LINFO("[%d] REAL %ld CANDIDATE %ld STRIKE %f BERNOULLI %f",i,realPixels[i]
00371           ,candPixels[i],strikeP[i],bernoulliP[i]);
00372     outfile << realPixels[i] << "\t" << candPixels[i] << "\t"
00373             << strikeP[i] << "\t" << bernoulliP[i] << "\t";
00374   }
00375 
00376   outfile << "\n";
00377   outfile.close();
00378 
00379 }
00380 
00381 void CINNICstatsRun::randomMatch(float *likelyhood,
00382                                  long *posRegionCount, long *totalCount)
00383 {
00384   long pRC = 0, tC = 0;
00385   float lh;
00386 
00387   for(int i = 0; i < compImage.getWidth(); i++)
00388   {
00389     for(int j = 0; j < compImage.getHeight(); j++)
00390     {
00391       if(maskImage.getVal(i,j) < 10.0F)
00392       {
00393         tC++;
00394         if(compImage.getVal(i,j) > rankThresh)
00395         {
00396           pRC++;
00397         }
00398       }
00399     }
00400   }
00401   lh = pRC/tC;
00402   *posRegionCount = pRC;
00403   *totalCount = tC;
00404   *likelyhood = lh;
00405 }
00406 
00407 void CINNICstatsRun::preProcess()
00408 {
00409   if(qualityImage == 0)
00410   {
00411     compImage = rescale(compImage,unEvenDec,unEvenDec);
00412     //Raster::VisuFloat(compImage, FLOAT_NORM_0_255, sformat("bar2.%d.pgm",i));
00413     compImage = lowPass5(compImage);
00414     // create some levity for my bad drawing
00415 
00416     for(int x = 0; x < compImage.getWidth(); x++)
00417     {
00418       for(int y = 0; y < compImage.getHeight(); y++)
00419       {
00420         if(compImage.getVal(x,y) < highThresh){compImage.setVal(x,y,255.0F);}
00421         else{compImage.setVal(x,y,0.0F);}
00422       }
00423     }
00424     compImage =\
00425       rescale(compImage,testImage.getWidth(),testImage.getHeight());
00426 
00427     //compImage = lowPass9(compImage);
00428     //compImage = lowPass5(compImage);
00429 
00430     // chop "black" values below chopVal (i.e. 31)
00431     for(int x = 0; x < compImage.getWidth(); x++)
00432     {
00433       for(int y = 0; y < compImage.getHeight(); y++)
00434       {
00435         if(compImage.getVal(x,y) < chopVal){compImage.setVal(x,y,0.0F);}
00436         if(testImage.getVal(x,y) < chopVal){testImage.setVal(x,y,0.0F);}
00437       }
00438     }
00439   }
00440   else
00441   {
00442     for(int x = 0; x < compImage.getWidth(); x++)
00443     {
00444       for(int y = 0; y < compImage.getHeight(); y++)
00445       {
00446         if(compImage.getVal(x,y) < qChop){compImage.setVal(x,y,0.0F);}
00447       }
00448     }
00449   }
00450 }
00451 
00452 void CINNICstatsRun::checkSize()
00453 {
00454   if(doResize == 0)
00455   {
00456     ASSERT(tempImage1c.getWidth() == tempImage2.getWidth());
00457     ASSERT(tempImage1c.getHeight() == tempImage2.getHeight());
00458   }
00459   else
00460   {
00461     if(tempImage1c.getWidth() != tempImage2.getWidth())
00462     {
00463       if(tempImage1c.getHeight() != tempImage2.getHeight())
00464       {
00465         tempImage2 =\
00466           rescale(tempImage2,tempImage1c.getWidth(),tempImage1c.getHeight());
00467       }
00468       else
00469       {
00470         ASSERT("skew detected, cannot resize");
00471       }
00472     }
00473   }
00474 }
00475 
00476 PixRGB<float> CINNICstatsRun::colorTable(int i)
00477 {
00478   PixRGB<float> pix;
00479   pix.setRed(0.0F);
00480   pix.setGreen(0.0F);
00481   pix.setBlue(0.0F);
00482   switch(i)
00483   {
00484   case 0: //red
00485     pix.setRed(255.0F);
00486     break;
00487   case 1: //orange
00488     pix.setGreen(128.0F);
00489     pix.setRed(255.0F);
00490     break;
00491   case 2: //yellow
00492     pix.setRed(255.0F);
00493     pix.setGreen(255.0F);
00494     break;
00495   case 3: //green
00496     pix.setGreen(255.0F);
00497     break;
00498   case 4: //blue
00499     pix.setBlue(255.0F);
00500     break;
00501   case 5: //violet(ish)
00502     pix.setRed(255.0F);
00503     pix.setBlue(255.0F);
00504     break;
00505   default: //white
00506     pix.setRed(255.0F);
00507     pix.setGreen(255.0F);
00508     pix.setBlue(255.0F);
00509   }
00510   return pix;
00511 }
00512 
00513 void CINNICstatsRun::pointAndFloodImage(Image<float> test_image,
00514                                         Image<float> sal_map
00515                                         ,int points,char* filename,
00516                                         float floodv,float floodt)
00517 {
00518   monoColor = 0;
00519   pointsNum = points;
00520   useDrawDisk = 0;
00521   floodThresh = floodt;
00522   floodVal = floodv;
00523   circRad = 15;
00524   pointAndFloodImage(test_image,sal_map,filename);
00525 }
00526 
00527 void CINNICstatsRun::pointAndFloodImage(Image<float> test_image,
00528                                         Image<float> sal_map
00529                                         ,char* filename)
00530 {
00531   LINFO("running POINT and FLOOD for %s",filename);
00532   point2D = new Point2D<int>;
00533   testImage = sal_map;
00534   maskImage.resize(sal_map.getWidth(),sal_map.getHeight(),true);
00535   outImageTemplate = test_image;
00536   outImageSource = sal_map;
00537   salMap.resize(sal_map.getWidth(),sal_map.getHeight(),true);
00538   pointAndFlood(filename,0,true);
00539 }
00540 
00541 void CINNICstatsRun::pointAndFlood(const char* filename,int i,bool standalone)
00542 {
00543   Image<float> storeImage;
00544   for(int n = 0; n < pointsNum; n++)
00545   {
00546     if(!(standalone))
00547     {
00548       float strike = 0.0F;
00549       long cand = 0 ,real = 0;
00550       randomMatch(&strike,&cand,&real);
00551       candPixels[n] += cand;
00552       realPixels[n] += real;
00553     }
00554 
00555     float maxVal;
00556     findMax(testImage, *point2D,maxVal);
00557     salMap.setVal(*point2D,255.0F);
00558     //LINFO("PixelVal %f",compImage.getVal(*point2D));
00559     if(!(standalone))
00560     {
00561       if(compImage.getVal(*point2D) > rankThresh)
00562       {
00563         pointsFound[i]++;   //count up
00564         if(pointRank[i] == -1)
00565         {
00566           pointRank[i] = n; //set rank
00567           rankTotal += n;
00568           pointRankNum[(int)pointRank[i]]++;
00569           LINFO("Setting %d as rank %f",i,pointRank[i]);
00570         }
00571       }
00572     }
00573     //pixRGB.setRed(n*setter);
00574     pixRGB = colorTable(n);
00575     if(n > 0)
00576     {
00577       Point2D<int> *oldPoint = new Point2D<int>(ii,jj);
00578       //LINFO("P %d,%d %d,%d",point2D->i,point2D->j,oldPoint->i,oldPoint->j);
00579       if(monoColor != 1)
00580       {
00581         drawArrow(outImageTemplate, *oldPoint,*point2D,pixRGB);
00582         drawArrow(outImageSource, *oldPoint,*point2D,pixRGB);
00583       }
00584       else
00585       {
00586         pixRGB = colorTable(-1);
00587         drawArrow(outImageTemplate, *oldPoint,*point2D,pixRGB,2);
00588         drawArrow(outImageSource, *oldPoint,*point2D,pixRGB,2);
00589       }
00590     }
00591     ii = point2D->i;
00592     jj = point2D->j;
00593     if(monoColor != 1)
00594     {
00595       drawCircle(outImageTemplate, *point2D,circRad,pixRGB);
00596       drawCircle(outImageSource, *point2D,circRad,pixRGB);
00597     }
00598     else
00599     {
00600       //set white (default switch)
00601       pixRGB = colorTable(-1);
00602       drawCircle(outImageTemplate, *point2D,circRad,pixRGB,2);
00603       drawCircle(outImageSource, *point2D,circRad,pixRGB,2);
00604     }
00605     if(useDrawDisk != 1)
00606     {
00607       flood(testImage, storeImage,*point2D,floodThresh,floodVal);
00608       testImage -= storeImage;
00609     }
00610     else
00611     {
00612       drawDisk(testImage, *point2D,diskSize,0.0F);
00613       drawDisk(maskImage, *point2D,diskSize,255.0F);
00614     }
00615     //Raster::VisuFloat(testImage,0,"testimage.pgm");
00616   }
00617   if(!(standalone))
00618   {
00619     foundTotal += (int)pointsFound[i];
00620     pointsFoundNum[(int)pointsFound[i]]++;
00621     LINFO("Number Found %f / %d",pointsFound[i],pointsNum);
00622   }
00623   LINFO("writing %s.salPoint",filename);
00624 
00625   Image<PixRGB <byte> > thisBytes = outImageTemplate;
00626   Raster::WriteRGB(thisBytes,sformat("%s.salPoint.ppm",filename));
00627   thisBytes = outImageSource;
00628   Raster::WriteRGB(thisBytes,sformat("%s,salPointSource.ppm",filename));
00629 }
00630 
00631 float CINNICstatsRun::polatSagi2AFC(Image<float> targetImage,
00632                                     Image<float> notargetImage)
00633 {
00634   ASSERT(targetImage.getHeight() == notargetImage.getHeight());
00635   ASSERT(targetImage.getWidth() == notargetImage.getWidth());
00636   int Xcenter = (targetImage.getWidth()/2)+centerOffset;
00637   int Ycenter = (targetImage.getHeight()/2)+centerOffset;
00638   mu1 = PSError + targetImage.getVal(Xcenter,Ycenter);
00639   mu2 = PSError + notargetImage.getVal(Xcenter,Ycenter);
00640   float sigma1 = sqrt(mu1);
00641   float sigma2 = sqrt(mu2);
00642   return Stats.getErrorGGC_2AFC(mu1,mu2,sigma1,sigma2);
00643 }
00644 
00645 float CINNICstatsRun::getMu1()
00646 {
00647   return mu1;
00648 }
00649 
00650 float CINNICstatsRun::getMu2()
00651 {
00652   return mu2;
00653 }
00654 
00655 // ######################################################################
00656 /* So things look consistent in everyone's emacs... */
00657 /* Local Variables: */
00658 /* indent-tabs-mode: nil */
00659 /* End: */
Generated on Sun May 8 08:40:22 2011 for iLab Neuromorphic Vision Toolkit by  doxygen 1.6.3