segmentImageMerge2.C

Go to the documentation of this file.
00001 /*!@file VFAT/segmentImageMerge2.C Basic image segmenter blob finder using color */
00002 
00003 // //////////////////////////////////////////////////////////////////// //
00004 // The iLab Neuromorphic Vision C++ Toolkit - Copyright (C) 2001 by the //
00005 // University of Southern California (USC) and the iLab at USC.         //
00006 // See http://iLab.usc.edu for information about this project.          //
00007 // //////////////////////////////////////////////////////////////////// //
00008 // Major portions of the iLab Neuromorphic Vision Toolkit are protected //
00009 // under the U.S. patent ``Computation of Intrinsic Perceptual Saliency //
00010 // in Visual Environments, and Applications'' by Christof Koch and      //
00011 // Laurent Itti, California Institute of Technology, 2001 (patent       //
00012 // pending; application number 09/912,225 filed July 23, 2001; see      //
00013 // http://pair.uspto.gov/cgi-bin/final/home.pl for current status).     //
00014 // //////////////////////////////////////////////////////////////////// //
00015 // This file is part of the iLab Neuromorphic Vision C++ Toolkit.       //
00016 //                                                                      //
00017 // The iLab Neuromorphic Vision C++ Toolkit is free software; you can   //
00018 // redistribute it and/or modify it under the terms of the GNU General  //
00019 // Public License as published by the Free Software Foundation; either  //
00020 // version 2 of the License, or (at your option) any later version.     //
00021 //                                                                      //
00022 // The iLab Neuromorphic Vision C++ Toolkit is distributed in the hope  //
00023 // that it will be useful, but WITHOUT ANY WARRANTY; without even the   //
00024 // implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR      //
00025 // PURPOSE.  See the GNU General Public License for more details.       //
00026 //                                                                      //
00027 // You should have received a copy of the GNU General Public License    //
00028 // along with the iLab Neuromorphic Vision C++ Toolkit; if not, write   //
00029 // to the Free Software Foundation, Inc., 59 Temple Place, Suite 330,   //
00030 // Boston, MA 02111-1307 USA.                                           //
00031 // //////////////////////////////////////////////////////////////////// //
00032 //
00033 // Primary maintainer for this file: T. Nathan Mundhenk <mundhenk@usc.edu>
00034 // $HeadURL: svn://isvn.usc.edu/software/invt/trunk/saliency/src/VFAT/segmentImageMerge2.C $
00035 // $Id: segmentImageMerge2.C 9412 2008-03-10 23:10:15Z farhan $
00036 //
00037 
00038 #include "VFAT/segmentImageMerge2.H"
00039 
00040 #include "Util/Assert.H"
00041 #include "Raster/Raster.H"
00042 
00043 #include <cstdio>
00044 #include <cstdlib>
00045 #include <iostream>
00046 
00047 //! initial vergance values
00048 #define CAMERAMU1         12.0F
00049 #define CAMERAMU2         23.0F
00050 #define CAMERAMU3         34.0F
00051 #define CAMERASIGMA1      33.0F
00052 #define CAMERASIGMA2      56.0F
00053 #define CAMERASIGMA3      67.0F
00054 
00055 //! width distance to center between cameras in inches
00056 /* e.g. take the distance between cameras and divide by half */
00057 #define DISTANCE          5
00058 
00059 //! maximum lose of tracks before color is reset
00060 #define LOTMAX            5
00061 
00062 //! How many iteration to calculate over for movement statistics
00063 #define ERRINTERVAL       5
00064 
00065 void segmentImageMerge2::SIMcolorProcessBlobs(int instance)
00066 {
00067   float H1,S1,V1,Hs1,Ss1,Vs1;
00068   float mass;
00069   H1 = 0; S1 = 0; V1 = 0;
00070   Hs1 = 0; Ss1 = 0; Vs1 = 0;
00071   mass = 0;
00072 
00073   // iterate over all blobs and asses new HSV thresholds from
00074   // candidate blobs
00075   for(int i = 0; i < SIM_segment[instance].SInumberBlobs(); i++)
00076   {
00077     if(SIM_track[instance].SITisCandidate(i) == true)
00078     {
00079       float H2,S2,V2,Hs2,Ss2,Vs2;
00080       // get mean value for this candidate blob, these values will be used
00081       // to create new adaptive color
00082       SIM_segment[instance].SIgetHSVvalueMean(i,&H2,&S2,&V2,&Hs2,&Ss2,&Vs2);
00083 
00084       // Add in HSV values for each blob times the blob size
00085       // to make larger blobs give more push on mean values
00086       H1 += H2 * SIM_segment[instance].SIgetMass(i);
00087       S1 += S2 * SIM_segment[instance].SIgetMass(i);
00088       V1 += V2 * SIM_segment[instance].SIgetMass(i);
00089       Hs1 += Hs2 * SIM_segment[instance].SIgetMass(i);
00090       Ss1 += Ss2 * SIM_segment[instance].SIgetMass(i);
00091       Vs1 += Vs2 * SIM_segment[instance].SIgetMass(i);
00092       // increment mass
00093       mass += SIM_segment[instance].SIgetMass(i);
00094 
00095       // find boundaries of this blob
00096       int tt = SIM_segment[instance].SIgetYmin(i);
00097       int bb = SIM_segment[instance].SIgetYmax(i);
00098       int ll = SIM_segment[instance].SIgetXmin(i);
00099       int rr = SIM_segment[instance].SIgetXmax(i);
00100 
00101 
00102       // draw bounding box for this blob
00103       // Note: box must be of height > 1 and width > 1
00104       if((bb != tt) && (ll != rr))
00105         drawRect(*SIM_imageHold, Rectangle::tlbrI(tt*4,ll*4,bb*4,rr*4),
00106                  PixRGB<byte>(SIM_boxRed[instance],
00107                               SIM_boxGreen[instance],
00108                               SIM_boxBlue[instance]),1);
00109 
00110       // draw target circle for this blob
00111       drawCircle(*SIM_imageHold, Point2D<int>((int)SIM_segment[instance].SIgetCenterX(i)
00112                                          *4
00113                                          ,(int)SIM_segment[instance].SIgetCenterY(i)*4)
00114                  ,(int)sqrt((double)SIM_segment[instance].SIgetMass(i)),
00115                  PixRGB<byte>(SIM_circleRed[instance],
00116                               SIM_circleGreen[instance],
00117                               SIM_circleBlue[instance]),2);
00118 
00119       drawCircle(*SIM_imageHold, Point2D<int>((int)SIM_segment[instance].SIgetCenterX(i)
00120                                          *4
00121                                          ,(int)SIM_segment[instance].SIgetCenterY(i)*4)
00122                  ,2,PixRGB<byte>(255,0,0),2);
00123 
00124     }
00125     else
00126     {
00127       if(SIM_track[instance].SITwasKilledByTrack(i) == false)
00128       {
00129               // find boundaries of this blob
00130         int tt = SIM_segment[instance].SIgetYmin(i);
00131         int bb = SIM_segment[instance].SIgetYmax(i);
00132         int ll = SIM_segment[instance].SIgetXmin(i);
00133         int rr = SIM_segment[instance].SIgetXmax(i);
00134 
00135 
00136         // draw bounding box for this blob
00137         // Note: box must be of height > 1 and width > 1
00138         if((bb != tt) && (ll != rr))
00139           drawRect(*SIM_imageHold, Rectangle::tlbrI(tt*4,ll*4,bb*4,rr*4),
00140                    PixRGB<byte>(SIM_circleRed[instance],
00141                                 SIM_circleGreen[instance],
00142                                 SIM_circleBlue[instance]),1);
00143       }
00144     }
00145   }
00146 
00147   // draw background grid in HSV bar graph
00148   if(SIM_fast != true)
00149     drawGrid(*SIM_auxHold, 25,25,1,1,PixRGB<byte>(50,50,50));
00150 
00151   // draw HSV bar graph if blobs have any mass
00152   if(mass != 0)
00153   {
00154     // figure out HSV bar values
00155     H1 = H1/mass;  S1 = S1/mass; V1 = V1/mass;
00156     Hs1 = Hs1/mass;  Ss1 = Ss1/mass; Vs1 = Vs1/mass;
00157     std::cout << "H " << H1 << " S " << S1 << " V " << V1 << "\n";
00158     std::cout << "Hs " << Hs1 << " Ss " << Ss1 << " Vs " << Vs1 << "\n";
00159     float htemp = H1-Hs1+6;
00160     float stemp = ((S1-Ss1)*100)+6;
00161     float vtemp = V1-Vs1+6;
00162     if(htemp <= 1) htemp = 1;
00163     if(stemp <= 1) stemp = 1;
00164     if(vtemp <= 1) vtemp = 1;
00165     if(SIM_fast != true)
00166     {
00167 
00168       // draw HSV mean value bars as a bunch of rectangles
00169       drawRect(*SIM_auxHold, Rectangle::tlbrI(5,5,((int)H1+6),20),
00170                PixRGB<byte>(255,0,0),1);
00171       drawRect(*SIM_auxHold, Rectangle::tlbrI(5,25,(int)(S1*100)+6,40),
00172                PixRGB<byte>(0,255,0),1);
00173       drawRect(*SIM_auxHold, Rectangle::tlbrI(5,45,((int)V1+6),60),
00174                PixRGB<byte>(0,0,255),1);
00175 
00176       // draw standard deviation bars
00177       drawRect(*SIM_auxHold, Rectangle::tlbrI((int)(htemp),10,
00178                                        (int)(H1+Hs1+6),15),
00179                PixRGB<byte>(255,0,0),1);
00180       drawRect(*SIM_auxHold, Rectangle::tlbrI((int)(stemp),30,
00181                                        (int)(((S1+Ss1)*100)+6),35),
00182                PixRGB<byte>(0,255,0),1);
00183       drawRect(*SIM_auxHold, Rectangle::tlbrI((int)(vtemp),50,
00184                                        (int)(V1+Vs1+6),55),
00185                PixRGB<byte>(0,0,255),1);
00186 
00187     // find total mass of all candidate blobs
00188     int massCalc = (int)((mass/(SIM_fimaHold->getWidth()
00189                                 *SIM_fimaHold->getHeight()))*450);
00190     drawRect(*SIM_auxHold, Rectangle::tlbrI(5,65,massCalc+6,80),
00191              PixRGB<byte>(255,0,255),1);
00192     }
00193   }
00194 
00195   if(SIM_fast != true)
00196   {
00197     // Draw hard constraint bars into HVS bar graph
00198     drawRect(*SIM_auxHold, Rectangle::tlbrI(((int)SIM_HL[instance]+5),12,
00199                                      ((int)SIM_HU[instance]+6),13),
00200              PixRGB<byte>(255,255,0),1);
00201     drawRect(*SIM_auxHold, Rectangle::tlbrI((int)(SIM_SL[instance]*100)+5,32,
00202                                      (int)(SIM_SU[instance]*100)+6,33),
00203              PixRGB<byte>(255,255,0),1);
00204     drawRect(*SIM_auxHold, Rectangle::tlbrI(((int)SIM_VL[instance]+5),52,
00205                                      ((int)SIM_VU[instance]+6),53),
00206              PixRGB<byte>(255,255,0),1);
00207   }
00208 
00209   // If loss of track is registered 5 times, reset color
00210   // values to start up defualt values
00211   if(SIM_track[instance].SITreturnLOT() == true)
00212   {
00213     //LINFO("LOT on %d, Number %d",instance, LOTcount[instance]);
00214     if(SIM_LOTcount[instance] > LOTMAX)
00215     {
00216       SIMresetColor(instance);
00217     }
00218     else
00219     {
00220       SIM_LOTcount[instance]++;
00221     }
00222   }
00223   else
00224   {
00225 
00226     //LINFO("Get Value %d - %f,%f,%f,%f,%f,%f",instance,H1,S1,V1,Hs1,Ss1,Vs1);
00227     float hadj, sadj, vadj;
00228 
00229     // if adaptive thresholding is turned on, adjust color
00230     // by standard deviation of color
00231     if(SIM_HASTD[instance] == true)
00232       hadj = Hs1*SIM_HA[instance];
00233     else
00234       hadj = SIM_HA[instance];
00235 
00236     if(SIM_SASTD[instance] == true)
00237       sadj = Ss1*SIM_SA[instance];
00238     else
00239       sadj = SIM_SA[instance];
00240 
00241     if(SIM_VASTD[instance] == true)
00242       vadj = Vs1*SIM_VA[instance];
00243     else
00244       vadj = SIM_VA[instance];
00245 
00246     // if adaptation is true, adapt new color to mean values with
00247     // new standard deviation
00248     // but only within boundry constaints
00249     int count = 0;
00250     if(SIM_adpt[instance] == true)
00251     {
00252       if(H1 > SIM_HU[instance])
00253       {
00254         H1 = SIM_HU[instance];
00255         count++;
00256       }
00257       else
00258         if(H1 < SIM_HL[instance])
00259         {
00260           H1 = SIM_HL[instance];
00261           count++;
00262         }
00263 
00264       if(S1 > SIM_SU[instance])
00265       {
00266         S1 = SIM_SU[instance];
00267         count++;
00268       }
00269       else
00270         if(S1 < SIM_SL[instance])
00271         {
00272           S1 = SIM_SL[instance];
00273           count++;
00274         }
00275 
00276       if(V1 > SIM_VU[instance])
00277       {
00278         V1 = SIM_VU[instance];
00279         count++;
00280       }
00281       else
00282         if(V1 < SIM_VL[instance])
00283         {
00284           V1 = SIM_VL[instance];
00285           count++;
00286         }
00287 
00288       LINFO("Set Value %d - %f,%f,%f,%f,%f,%f",instance,
00289         H1,hadj,S1,sadj,V1,vadj);
00290       /*
00291       if(count > 1)
00292       {
00293         if(SIM_LOTcount[instance] > LOTMAX)
00294         {
00295           SIMresetColor(instance);
00296         }
00297         else
00298         {
00299           SIM_LOTcount[instance]++;
00300         }
00301       }
00302       */
00303       SIM_segment[instance].SIsetHue(H1,hadj,0);
00304       SIM_segment[instance].SIsetSat(S1,sadj,0);
00305       SIM_segment[instance].SIsetVal(V1,vadj,0);
00306     }
00307   }
00308 }
00309 
00310 void segmentImageMerge2::SIMresetColor(int instance)
00311 {
00312 
00313   if(SIM_useCluster[instance] == false)
00314   {
00315     LINFO("LOT: Setting new colors from pre-defined for %d",instance);
00316     SIM_segment[instance].SIsetHue(SIM_H[instance],SIM_Hstd[instance]*5,0);
00317     SIM_segment[instance].SIsetSat(SIM_S[instance],SIM_Sstd[instance]*5,0);
00318     SIM_segment[instance].SIsetVal(SIM_V[instance],SIM_Vstd[instance]*5,0);
00319   }
00320   else
00321   {
00322     LINFO("LOT: Setting new colors from cluster for %d",instance);
00323     SIMclusterColor(*SIM_fimaHold,instance);
00324   }
00325   SIM_LOTcount[instance] = 0;
00326   SIM_track[instance].SITreset();
00327 }
00328 
00329 /************************/
00330 /* START PUBLIC METHODS */
00331 /***********************/
00332 
00333 void segmentImageMerge2::resetAll(int instances) {
00334 
00335         delete SIM_segment;
00336 
00337         SIM_clusterSet = false;
00338   SIM_instanceNumber = instances;
00339   SIM_useCluster.resize(instances,false);
00340   SIM_H.resize(instances,0);
00341   SIM_S.resize(instances,0);
00342   SIM_V.resize(instances,0);
00343   SIM_Hstd.resize(instances,0);
00344   SIM_Sstd.resize(instances,0);
00345   SIM_Vstd.resize(instances,0);
00346   SIM_HA.resize(instances,3);
00347   SIM_SA.resize(instances,3);
00348   SIM_VA.resize(instances,3);
00349   SIM_HU.resize(instances,360);
00350   SIM_SU.resize(instances,1);
00351   SIM_VU.resize(instances,255);
00352   SIM_HL.resize(instances,0);
00353   SIM_SL.resize(instances,0);
00354   SIM_VL.resize(instances,0);
00355   SIM_delay.resize(instances,0);
00356   SIM_cameraMovePan.resize(instances,90);
00357   SIM_cameraMoveTilt.resize(instances,90);
00358   SIM_cameraGotoPan.resize(instances,90);
00359   SIM_cameraGotoTilt.resize(instances,90);
00360   SIM_cameraMu.resize((instances-1),0);
00361   SIM_cameraSigma.resize((instances-1),0);
00362   SIM_meanMove.resize(instances,0);
00363 
00364   SIM_stdMove.resize(instances,0);
00365 
00366   std::vector<float> temp;
00367   temp.resize(ERRINTERVAL,0);
00368   SIM_moveRecord.resize(instances,temp);
00369   SIM_moveRecordGrad.resize(instances,temp);
00370   SIM_LOTcount.resize(instances,0);
00371   SIM_height.resize(instances,0);
00372   SIM_width.resize(instances,0);
00373   SIM_gotoX.resize(instances,0);
00374   SIM_gotoY.resize(instances,0);
00375   SIM_circleRed.resize(instances,0);
00376   SIM_circleGreen.resize(instances,0);
00377   SIM_circleBlue.resize(instances,0);
00378   SIM_boxRed.resize(instances,0);
00379   SIM_boxGreen.resize(instances,0);
00380   SIM_boxBlue.resize(instances,0);
00381   SIM_didCircleColor.resize(instances,0);
00382   SIM_didBoxColor.resize(instances,0);
00383   SIM_didTrackColor.resize(instances,0);
00384   SIM_recordCounter.resize(instances,0);
00385   SIM_adpt.resize(instances,true);
00386   SIM_HASTD.resize(instances,false);
00387   SIM_SASTD.resize(instances,false);
00388   SIM_VASTD.resize(instances,false);
00389   SIM_moveCamera.resize(instances,false);
00390   temp.resize(instances);
00391   Timer Ttemp;
00392   SIM_tim.resize(instances,Ttemp);
00393   //segmentImage stmp;
00394   //segment.resize(instances,stmp);
00395   SIM_segment = new segmentImage2[instances];
00396   segmentImageTrack2 sttmp;
00397   SIM_track.resize(instances,sttmp);
00398 
00399   blobConf.openFile("blob.conf",true);
00400   SIM_blobProp.BP_LOTbound = (int)blobConf.getItemValueF("BP_LOTbound");
00401   SIM_blobProp.BP_bound = (int)blobConf.getItemValueF("BP_bound");
00402   SIM_blobProp.BP_softBound = (int)blobConf.getItemValueF("BP_softBound");
00403   SIM_blobProp.BP_lowBound = (int)blobConf.getItemValueF("BP_lowBound");
00404   SIM_blobProp.BP_traj = (int)blobConf.getItemValueF("BP_traj");
00405   SIM_blobProp.BP_sampleStart = (int)blobConf.getItemValueF("BP_sampleStart");
00406   SIM_blobProp.BP_maxTraj = (int)blobConf.getItemValueF("BP_maxTraj");
00407   SIM_blobProp.BP_maxSize = (int)blobConf.getItemValueF("BP_maxSize");
00408   SIM_blobProp.BP_minSize = (int)blobConf.getItemValueF("BP_minSize");
00409   SIM_blobProp.BP_maxFrameSize = blobConf.getItemValueF("BP_maxFrameSize");
00410   SIM_blobProp.BP_minMass = (int)blobConf.getItemValueF("BP_minMass");
00411   SIM_blobProp.BP_maxMass = (int)blobConf.getItemValueF("BP_maxMass");
00412   SIM_blobProp.BP_ratioMin = blobConf.getItemValueF("BP_ratioMin");
00413   SIM_blobProp.BP_softRatioMin = blobConf.getItemValueF("BP_softRatioMin");
00414   SIM_blobProp.BP_ratioMax = blobConf.getItemValueF("BP_ratioMax");
00415   SIM_blobProp.BP_softRatioMax = blobConf.getItemValueF("BP_softRatioMax");
00416   SIM_blobProp.BP_minClusterSize =
00417     (int)blobConf.getItemValueF("BP_minClusterSize");
00418   SIM_blobProp.BP_clusterWeightSpat =
00419     blobConf.getItemValueF("BP_clusterWeightSpat");
00420   //! set the weights in cluster for Hue
00421   SIM_blobProp.BP_clusterWeightH =
00422     blobConf.getItemValueF("BP_clusterWeightH");
00423   //! set the weights in cluster for Sat
00424   SIM_blobProp.BP_clusterWeightS =
00425     blobConf.getItemValueF("BP_clusterWeightS");
00426   //! set the weights in cluster for Val
00427   SIM_blobProp.BP_clusterWeightV =
00428     blobConf.getItemValueF("BP_clusterWeightV");
00429   //! set initial standard deviation for color tracking after Hue
00430   SIM_blobProp.BP_clusterColorStdH =
00431     blobConf.getItemValueF("BP_clusterColorStdH");
00432   //! set initial standard deviation for color tracking after Sat
00433   SIM_blobProp.BP_clusterColorStdS =
00434     blobConf.getItemValueF("BP_clusterColorStdS");
00435   //! set initial standard deviation for color tracking after Val
00436   SIM_blobProp.BP_clusterColorStdV =
00437     blobConf.getItemValueF("BP_clusterColorStdV");
00438 
00439 
00440   for(int i = 0; i < instances; i++)
00441   {
00442     SIM_track[i].SITsetBlobProp(&SIM_blobProp);
00443     SIM_track[i].SITsetUpVars(1000);
00444     SIM_track[i].SITsetImage(&SIM_segment[i]);
00445   }
00446 
00447   SIM_cameraMu[0] = CAMERAMU1;
00448   SIM_cameraMu[1] = CAMERAMU2;
00449   SIM_cameraMu[2] = CAMERAMU3;
00450   SIM_cameraSigma[0] = CAMERASIGMA1;
00451   SIM_cameraSigma[1] = CAMERASIGMA2;
00452   SIM_cameraSigma[2] = CAMERASIGMA3;
00453 
00454 }
00455 
00456 // When called at the start, this will resize all the vectors we use
00457 segmentImageMerge2::segmentImageMerge2(int instances)
00458 {
00459   SIM_clusterSet = false;
00460   SIM_instanceNumber = instances;
00461   SIM_useCluster.resize(instances,false);
00462   SIM_H.resize(instances,0);
00463   SIM_S.resize(instances,0);
00464   SIM_V.resize(instances,0);
00465   SIM_Hstd.resize(instances,0);
00466   SIM_Sstd.resize(instances,0);
00467   SIM_Vstd.resize(instances,0);
00468   SIM_HA.resize(instances,3);
00469   SIM_SA.resize(instances,3);
00470   SIM_VA.resize(instances,3);
00471   SIM_HU.resize(instances,360);
00472   SIM_SU.resize(instances,1);
00473   SIM_VU.resize(instances,255);
00474   SIM_HL.resize(instances,0);
00475   SIM_SL.resize(instances,0);
00476   SIM_VL.resize(instances,0);
00477   SIM_delay.resize(instances,0);
00478   SIM_cameraMovePan.resize(instances,90);
00479   SIM_cameraMoveTilt.resize(instances,90);
00480   SIM_cameraGotoPan.resize(instances,90);
00481   SIM_cameraGotoTilt.resize(instances,90);
00482   SIM_cameraMu.resize((instances-1),0);
00483   SIM_cameraSigma.resize((instances-1),0);
00484   SIM_meanMove.resize(instances,0);
00485 
00486   SIM_stdMove.resize(instances,0);
00487 
00488   std::vector<float> temp;
00489   temp.resize(ERRINTERVAL,0);
00490   SIM_moveRecord.resize(instances,temp);
00491   SIM_moveRecordGrad.resize(instances,temp);
00492   SIM_LOTcount.resize(instances,0);
00493   SIM_height.resize(instances,0);
00494   SIM_width.resize(instances,0);
00495   SIM_gotoX.resize(instances,0);
00496   SIM_gotoY.resize(instances,0);
00497   SIM_circleRed.resize(instances,0);
00498   SIM_circleGreen.resize(instances,0);
00499   SIM_circleBlue.resize(instances,0);
00500   SIM_boxRed.resize(instances,0);
00501   SIM_boxGreen.resize(instances,0);
00502   SIM_boxBlue.resize(instances,0);
00503   SIM_didCircleColor.resize(instances,0);
00504   SIM_didBoxColor.resize(instances,0);
00505   SIM_didTrackColor.resize(instances,0);
00506   SIM_recordCounter.resize(instances,0);
00507   SIM_adpt.resize(instances,true);
00508   SIM_HASTD.resize(instances,false);
00509   SIM_SASTD.resize(instances,false);
00510   SIM_VASTD.resize(instances,false);
00511   SIM_moveCamera.resize(instances,false);
00512   temp.resize(instances);
00513   Timer Ttemp;
00514   SIM_tim.resize(instances,Ttemp);
00515   //segmentImage stmp;
00516   //segment.resize(instances,stmp);
00517   SIM_segment = new segmentImage2[instances];
00518   segmentImageTrack2 sttmp;
00519   SIM_track.resize(instances,sttmp);
00520 
00521   blobConf.openFile("blob.conf",true);
00522   SIM_blobProp.BP_LOTbound = (int)blobConf.getItemValueF("BP_LOTbound");
00523   SIM_blobProp.BP_bound = (int)blobConf.getItemValueF("BP_bound");
00524   SIM_blobProp.BP_softBound = (int)blobConf.getItemValueF("BP_softBound");
00525   SIM_blobProp.BP_lowBound = (int)blobConf.getItemValueF("BP_lowBound");
00526   SIM_blobProp.BP_traj = (int)blobConf.getItemValueF("BP_traj");
00527   SIM_blobProp.BP_sampleStart = (int)blobConf.getItemValueF("BP_sampleStart");
00528   SIM_blobProp.BP_maxTraj = (int)blobConf.getItemValueF("BP_maxTraj");
00529   SIM_blobProp.BP_maxSize = (int)blobConf.getItemValueF("BP_maxSize");
00530   SIM_blobProp.BP_minSize = (int)blobConf.getItemValueF("BP_minSize");
00531   SIM_blobProp.BP_maxFrameSize = blobConf.getItemValueF("BP_maxFrameSize");
00532   SIM_blobProp.BP_minMass = (int)blobConf.getItemValueF("BP_minMass");
00533   SIM_blobProp.BP_maxMass = (int)blobConf.getItemValueF("BP_maxMass");
00534   SIM_blobProp.BP_ratioMin = blobConf.getItemValueF("BP_ratioMin");
00535   SIM_blobProp.BP_softRatioMin = blobConf.getItemValueF("BP_softRatioMin");
00536   SIM_blobProp.BP_ratioMax = blobConf.getItemValueF("BP_ratioMax");
00537   SIM_blobProp.BP_softRatioMax = blobConf.getItemValueF("BP_softRatioMax");
00538   SIM_blobProp.BP_minClusterSize =
00539     (int)blobConf.getItemValueF("BP_minClusterSize");
00540   SIM_blobProp.BP_clusterWeightSpat =
00541     blobConf.getItemValueF("BP_clusterWeightSpat");
00542   //! set the weights in cluster for Hue
00543   SIM_blobProp.BP_clusterWeightH =
00544     blobConf.getItemValueF("BP_clusterWeightH");
00545   //! set the weights in cluster for Sat
00546   SIM_blobProp.BP_clusterWeightS =
00547     blobConf.getItemValueF("BP_clusterWeightS");
00548   //! set the weights in cluster for Val
00549   SIM_blobProp.BP_clusterWeightV =
00550     blobConf.getItemValueF("BP_clusterWeightV");
00551   //! set initial standard deviation for color tracking after Hue
00552   SIM_blobProp.BP_clusterColorStdH =
00553     blobConf.getItemValueF("BP_clusterColorStdH");
00554   //! set initial standard deviation for color tracking after Sat
00555   SIM_blobProp.BP_clusterColorStdS =
00556     blobConf.getItemValueF("BP_clusterColorStdS");
00557   //! set initial standard deviation for color tracking after Val
00558   SIM_blobProp.BP_clusterColorStdV =
00559     blobConf.getItemValueF("BP_clusterColorStdV");
00560 
00561 
00562   for(int i = 0; i < instances; i++)
00563   {
00564     SIM_track[i].SITsetBlobProp(&SIM_blobProp);
00565     SIM_track[i].SITsetUpVars(1000);
00566     SIM_track[i].SITsetImage(&SIM_segment[i]);
00567   }
00568 
00569   SIM_cameraMu[0] = CAMERAMU1;
00570   SIM_cameraMu[1] = CAMERAMU2;
00571   SIM_cameraMu[2] = CAMERAMU3;
00572   SIM_cameraSigma[0] = CAMERASIGMA1;
00573   SIM_cameraSigma[1] = CAMERASIGMA2;
00574   SIM_cameraSigma[2] = CAMERASIGMA3;
00575 
00576 
00577 }
00578 
00579 segmentImageMerge2::~segmentImageMerge2()
00580 {}
00581 
00582 void segmentImageMerge2::SIMsetCircleColor(int r, int g, int b, int instance)
00583 {
00584   SIM_circleRed[instance] = r;
00585   SIM_circleBlue[instance] = g;
00586   SIM_circleGreen[instance] = b;
00587   SIM_didCircleColor[instance] = 1;
00588 }
00589 
00590 void segmentImageMerge2::SIMsetBoxColor(int r, int g, int b, int instance)
00591 {
00592   SIM_boxRed[instance] = r;
00593   SIM_boxBlue[instance] = g;
00594   SIM_boxGreen[instance] = b;
00595   SIM_didBoxColor[instance] = 1;
00596 }
00597 
00598 void segmentImageMerge2::SIMsetTrackColor(float h, float hstd,
00599                                       float s, float sstd,
00600                                       float v, float vstd,
00601                                       int instance, bool adapt, int avg)
00602 {
00603   SIM_H[instance] = h;
00604   SIM_S[instance] = s;
00605   SIM_V[instance] = v;
00606   SIM_Hstd[instance] = hstd;
00607   SIM_Sstd[instance] = sstd;
00608   SIM_Vstd[instance] = vstd;
00609   SIM_adpt[instance] = adapt;
00610   SIM_segment[instance].SIsetHue(SIM_H[instance],SIM_Hstd[instance],0);
00611   SIM_segment[instance].SIsetSat(SIM_S[instance],SIM_Sstd[instance],0);
00612   SIM_segment[instance].SIsetVal(SIM_V[instance],SIM_Vstd[instance],0);
00613   SIM_didTrackColor[instance] = 1;
00614   SIM_segment[instance].SIsetHSVavg(avg);
00615 }
00616 
00617 void segmentImageMerge2::SIMsetAdapt(float ha, bool haSTD, float sa,
00618                                      bool saSTD,
00619                                      float va, bool vaSTD, int instance,
00620                                      bool useCluster)
00621 {
00622   SIM_useCluster[instance] = useCluster;
00623   SIM_HA[instance] = ha;
00624   SIM_SA[instance] = sa;
00625   SIM_VA[instance] = va;
00626   SIM_HASTD[instance] = haSTD;
00627   SIM_SASTD[instance] = saSTD;
00628   SIM_VASTD[instance] = vaSTD;
00629 }
00630 
00631 void segmentImageMerge2::SIMsetAdaptBound(float Hupper, float Hlower,
00632                    float Supper, float Slower,
00633                    float Vupper, float Vlower,
00634                    int instance)
00635 {
00636   SIM_HU[instance] = Hupper;
00637   SIM_SU[instance] = Supper;
00638   SIM_VU[instance] = Vupper;
00639   SIM_HL[instance] = Hlower;
00640   SIM_SL[instance] = Slower;
00641   SIM_VL[instance] = Vlower;
00642 }
00643 
00644 void segmentImageMerge2::SIMsetCameraPosition(float pan, float tilt,
00645                                              int instance, bool stats)
00646 {
00647   // record camera movement
00648   SIM_cameraMovePan[instance] = pan;
00649   SIM_cameraMoveTilt[instance] = tilt;
00650   if(stats == true)
00651   {
00652     int doThisItem;
00653     float SIM_move = sqrt(pow(pan,2)+pow(tilt,2));
00654     if(SIM_recordCounter[instance] != 0)
00655     {
00656       doThisItem = instance - 1;
00657     }
00658     else
00659     {
00660       doThisItem = ERRINTERVAL - 1;
00661     }
00662 
00663     // Calculate finate state gradiant from last iteration to this one and record
00664     SIM_moveRecordGrad[instance][SIM_recordCounter[instance]] =
00665       SIM_move - SIM_moveRecord[instance][SIM_recordCounter[doThisItem]] ;
00666     SIM_moveRecord[instance][SIM_recordCounter[instance]] = SIM_move;
00667 
00668     float sumP = 0;
00669     float SSP = 0;
00670 
00671     // calcuate mean movements of camera servos
00672     for(int i = 0; i < ERRINTERVAL; i++)
00673     {
00674       sumP += SIM_moveRecordGrad[instance][i];
00675     }
00676     SIM_meanMove[instance] = sumP/ERRINTERVAL;
00677 
00678     // calculate standard deviation of camera servos
00679     for(int i = 0; i < ERRINTERVAL; i++)
00680     {
00681       SSP += pow((SIM_meanMove[instance] - SIM_moveRecordGrad[instance][i]),2);
00682     }
00683     SIM_stdMove[instance] = sqrt(SSP/ERRINTERVAL);
00684 
00685     //LINFO("CAM %d Move STD %f",instance,stdMove[instance]);
00686 
00687     // increment counter
00688     if(SIM_recordCounter[instance] < ERRINTERVAL)
00689       SIM_recordCounter[instance]++;
00690     else
00691       SIM_recordCounter[instance] = 0;
00692   }
00693 }
00694 
00695 void segmentImageMerge2::SIMsetFrame(int x1, int y1, int x2, int y2,
00696                                  int realX, int realY, int instance)
00697 {
00698   SIM_segment[instance].SIsetFrame(x1,y1,x2,y2,realX,realY);
00699 }
00700 
00701 /* This is a basic tracker access method that tracks on one image at a time */
00702 void segmentImageMerge2::SIMtrackImage(Image<PixRGB<byte> > input,
00703                                    Image<PixRGB<byte> > *image, int instance,
00704                                    Image<PixRGB<byte> > *auxImage, bool _fast)
00705 {
00706   // Assert that parameters have been set up before starting
00707   SIM_fast = _fast;
00708   ASSERT(SIM_didCircleColor[instance] == 1);
00709   ASSERT(SIM_didBoxColor[instance] == 1);
00710   ASSERT(SIM_didTrackColor[instance] == 1);
00711   SIM_imageHold = image;
00712   SIM_auxHold = auxImage;
00713 
00714   Image< PixRGB<float> > fima;
00715 
00716   // decimate input image twice to speed things up
00717   fima = decXY(input);
00718   fima = decXY(fima);
00719 
00720   SIM_fimaHold = &fima;
00721 
00722   // segment the decimated image
00723   SIM_segment[instance].SIsegment(fima);
00724 
00725   // get center of mass for blobs
00726   SIM_segment[instance].SIcalcMassCenter();
00727 
00728   // edit blobs, weed out all the non-hackers who are not fit to carry a rifle
00729   //LINFO("INSTANCE %d",instance);
00730   SIM_track[instance].SITtrack();
00731   // apply adaptive color thesholding
00732   SIMcolorProcessBlobs(instance);
00733 
00734 }
00735 
00736 // END
00737 
00738 // the statistical multi image tracker we will build
00739 void segmentImageMerge2::SIMtrackImageMulti(
00740                   std::vector<Image<PixRGB<byte> > > *image, int instances)
00741 {
00742   SIM_fast = true;
00743   Image< PixRGB<float> > fima;
00744 
00745   for(int i = 0; i < instances; i++)
00746   {
00747     ASSERT(SIM_didCircleColor[i] == 1);
00748     ASSERT(SIM_didBoxColor[i] == 1);
00749     ASSERT(SIM_didTrackColor[i] == 1);
00750 
00751     SIM_imageHold = &(image->at(i));
00752     fima = decXY(image->at(i));
00753     fima = decXY(fima);
00754 
00755     // Color segment this instance
00756     SIM_segment[i].SIsegment(fima);
00757 
00758     // get center of mass for blobs
00759     SIM_segment[i].SIcalcMassCenter();
00760 
00761     // edit blobs, weed out all the non-hackers who are not fit
00762     // to carry a rifle
00763     SIM_track[i].SITtrack(0);
00764   }
00765 
00766   SIM_moveMeanNormal = 0;
00767   SIM_moveStdNormal = 0;
00768 
00769   // Normalize over movement statisitcs to apply them in the next iterations
00770   for(int i = 0; i < instances; i++)
00771   {
00772     SIM_moveMeanNormal += SIM_meanMove[i];
00773     SIM_moveStdNormal += SIM_stdMove[i];
00774   }
00775   //avoid divide by zero error
00776   SIM_moveMeanNormal += .000001;
00777   SIM_moveStdNormal += .000001;
00778   SIMupdateVergance(48,36);
00779 
00780   for(int i = 0; i < instances; i++)
00781   {
00782     SIM_imageHold = &(image->at(i));
00783     //compute vergance springs for each camera
00784     SIMverganceSpring(instances,i,true);
00785 
00786     // apply adaptive color thesholding
00787     SIMcolorProcessBlobs(i);
00788   }
00789 }
00790 
00791 void segmentImageMerge2::SIMmergeImages(Image<PixRGB<byte> > *image)
00792 {
00793   SIM_mergeGotoX = 0; SIM_mergeGotoY = 0;
00794   int mergeCount = 0;
00795   for(int i = 0; i < SIM_instanceNumber; i++)
00796   {
00797     SIM_gotoX[i] = SIM_track[i].SITgetObjectX();
00798     SIM_gotoY[i] = SIM_track[i].SITgetObjectY();
00799     if(SIM_track[i].SITreturnLOT() == false)
00800     {
00801       SIM_mergeGotoX += SIM_gotoX[i];
00802       SIM_mergeGotoY += SIM_gotoY[i];
00803       mergeCount++;
00804     }
00805   }
00806   if(mergeCount != 0)
00807   {
00808     SIM_mergeGotoX = SIM_mergeGotoX/mergeCount;
00809     SIM_mergeGotoY = SIM_mergeGotoY/mergeCount;
00810   }
00811   drawCircle(*image, Point2D<int>((int)SIM_mergeGotoX*4
00812                              ,(int)SIM_mergeGotoY*4)
00813              ,10,PixRGB<byte>(255,0,0),2);
00814 }
00815 
00816 void segmentImageMerge2::SIMupdateVergance(float distance, float gaussBase)
00817 {
00818   for(int i = 0; i < (SIM_instanceNumber-1); i++)
00819   {
00820     //this is the angle to the target from two apposing cameras.
00821     //Mu is then the differenc between these angles and 90 * 2
00822     SIM_cameraMu[i] = 2*(90-(((2*atan(distance/(DISTANCE*(i+1))))/3.14159)*90));
00823     // the base angle for something at three feet from target
00824     // i.e. make the gaussian three feet in diameters
00825     float baseAngle = 2*(90-(((2*atan((distance-gaussBase)
00826                                       /(DISTANCE*(i+1))))/3.14159)*90));
00827 
00828     SIM_cameraSigma[i] = fabs(baseAngle-SIM_cameraMu[i]);
00829     //LINFO("UPDATE VERGANCE camera %d, Mu %f STD %f"
00830     //,i,cameraMu[i],cameraSigma[i]);
00831   }
00832 }
00833 
00834 void segmentImageMerge2::SIMverganceSpring(int instances, int current,
00835                                        bool doTracked)
00836 {
00837 
00838   float theta, phi;
00839   int seperation;
00840 
00841 
00842   int maxBlob = -1;
00843   float maxBlobVal = 0;
00844 
00845   // if we didn't lose track and we want to vergance on cameras
00846   // that are tracking...
00847   if((SIM_track[current].SITreturnLOT() == false) && (doTracked == true))
00848   {
00849     SIM_moveCamera[current] = false;
00850 
00851     // for each blob this camera is tracking do
00852     for(int x = 0; x < SIM_segment[current].SInumberBlobs(); x++)
00853     {
00854       // check to make sure we havn't already disqualified this blob
00855       if(SIM_track[current].SITisCandidate(x) == true)
00856       {
00857         SIM_track[current].SIT_pVergance[x] = 0;
00858         // calculate the angle to the target blob being analized at the moment
00859         float gotoCY = fabs((480 - SIM_segment[current].SIgetCenterY(x)*8)
00860                            - SIM_camera.Ypixel);
00861 
00862         float panConv = ((float)SIM_camera.Xfield/(float)SIM_camera.Xpixel);
00863         float tiltConv = ((float)SIM_camera.Yfield/(float)SIM_camera.Ypixel);
00864 
00865         float panOff = ((float)SIM_camera.Xpixel*.5)
00866           - SIM_segment[current].SIgetCenterX(x)*8;
00867         float tiltOff = ((float)SIM_camera.Ypixel*.5)-gotoCY;
00868 
00869         float travelPan = SIM_cameraMovePan[current] +
00870           ((panOff*panConv)*SIM_camera.fieldAdjustmentX);
00871         float travelTilt = SIM_cameraMoveTilt[current] +
00872           ((tiltOff*tiltConv)*SIM_camera.fieldAdjustmentY);
00873 
00874         // cycle over other camera positions
00875         //and calculate the p of vergance for this camera
00876         for(int j = 0; j < instances; j++)
00877         {
00878           if(j != current)
00879           {
00880             if(j < current)
00881               theta = travelPan - SIM_cameraMovePan[j];
00882             else
00883               theta = SIM_cameraMovePan[j] - travelPan;
00884 
00885             phi = fabs(travelTilt - SIM_cameraMoveTilt[j]);
00886             seperation = abs(current - j);
00887 
00888             // p += vergance(tilt,cam(x))*vergance(pan,cam(x))
00889             SIM_track[current].SIT_pVergance[x] +=
00890               (SIM_Stats.gauss(theta,SIM_cameraMu[seperation-1]
00891                            ,SIM_cameraSigma[seperation-1])
00892                *SIM_Stats.gauss(phi,0.0F,21.0F))*
00893               (1-(SIM_stdMove[j]/SIM_moveStdNormal));
00894 
00895           }
00896         }
00897         // if I have the highest P of all the blobs in this
00898         // instance (camera) so far, I win. Take argmax
00899         if(SIM_track[current].SIT_pVergance[x] >= maxBlobVal)
00900         {
00901           if(maxBlob != -1)
00902           {
00903             // turn off this blob, it's no good
00904             SIM_track[current].SITsetCandidate(maxBlob,false);
00905           }
00906           maxBlob = x;
00907           // set this blob as the best one
00908           maxBlobVal = SIM_track[current].SIT_pVergance[x];
00909         }
00910         else
00911         {
00912           // turn off this blob, it not better than anyone
00913           SIM_track[current].SITsetCandidate(x,false);
00914         }
00915       }
00916     }
00917   }
00918   else
00919   {
00920     // this camera is in a LOT, send it to a vergance coordinate;
00921     if(SIM_LOTcount[current] > LOTMAX)
00922     {
00923       SIM_moveCamera[current] = true;
00924       float doPan = 0;
00925       float doTilt = 0;
00926       int normal = 0;
00927 
00928       // for all cameras not in LOT,
00929       // go to the average vergance over those cameras
00930       // e.g. you vergance should reflect the ones tracking
00931       for(int k = 0; k < instances; k++)
00932       {
00933 
00934         if((k != current) && (SIM_track[k].SITreturnLOT() == false))
00935         {
00936           seperation = abs(current - k);
00937           // you should converge to another camera based upon
00938           // the P derived from the gradiant of its
00939           // movement. This is cameras that are more fluid have more influince.
00940           if(k < current)
00941           {
00942             doPan += SIM_cameraMovePan[k]
00943               *(1- SIM_stdMove[k]/SIM_moveStdNormal)
00944               + SIM_cameraMu[seperation-1];
00945 
00946           }
00947           else
00948           {
00949             doPan += SIM_cameraMovePan[k]
00950               *(1 - SIM_stdMove[k]/SIM_moveStdNormal)
00951               - SIM_cameraMu[seperation-1];
00952           }
00953           doTilt += SIM_cameraMoveTilt[k]
00954             *(1 - SIM_stdMove[k]/SIM_moveStdNormal);
00955           normal++;
00956         }
00957       }
00958       if(normal != 0)
00959       {
00960         // if we can be biased by at least one camera do this
00961         SIM_cameraGotoPan[current] = doPan/normal;
00962         SIM_cameraGotoTilt[current] = doTilt/normal;
00963       }
00964     }
00965   }
00966 }
00967 
00968 void segmentImageMerge2::SIMgetImageTrackXY(int *x, int *y, int instance)
00969 {
00970   *x = SIM_gotoX[instance];
00971   *y = SIM_gotoY[instance];
00972 }
00973 
00974 void segmentImageMerge2::SIMgetImageTrackXY2(int *x, int *y, int instance)
00975 {
00976    *x = SIM_track[instance].SITgetObjectX();
00977    *y = SIM_track[instance].SITgetObjectY();
00978 }
00979 
00980 void segmentImageMerge2::SIMgetImageTrackXYMerge(int *x, int *y)
00981 {
00982   *x = SIM_mergeGotoX;
00983   *y = SIM_mergeGotoY;
00984 }
00985 
00986 bool segmentImageMerge2::SIMreturnLOT(int instance)
00987 {
00988   return SIM_track[instance].SITreturnLOT();
00989 }
00990 
00991 float segmentImageMerge2::SIMreturnCameraProb(int instance)
00992 {
00993   return (1-SIM_stdMove[instance]/SIM_moveStdNormal);
00994 }
00995 
00996 bool segmentImageMerge2::SIMdoMoveCamera(int instance, float *doPan,
00997                                         float *doTilt)
00998 {
00999   *doPan = SIM_cameraGotoPan[instance];
01000   *doTilt = SIM_cameraGotoTilt[instance];
01001 
01002   // calculate gradiant variance
01003   return SIM_moveCamera[instance];
01004 }
01005 
01006 Image<byte> segmentImageMerge2::SIMreturnCandidateImage(int instance)
01007 {
01008   return SIM_segment[instance].SIreturnNormalizedCandidates();
01009 }
01010 
01011 void segmentImageMerge2::SIMSetCluster(int sizeX, int sizeY, int instances,
01012                                        float hweight, float sweight,
01013                                        float vweight)
01014 {
01015   SIM_clusterSet = true;
01016   long totalSize = (sizeX/4)*(sizeY/4);
01017   SIM_Hweight = hweight;
01018   SIM_Sweight = sweight;
01019   SIM_Vweight = vweight;
01020   std::vector<double> tempVec(5,0.0F);
01021   std::vector<float> tempVec2(totalSize,0.0F);
01022   SIM_vectorizedImage.resize(totalSize,tempVec2);
01023   SIM_meanH.resize(instances,tempVec);
01024   SIM_meanS.resize(instances,tempVec);
01025   SIM_meanV.resize(instances,tempVec);
01026   SIM_stdH.resize(instances,tempVec);
01027   SIM_stdS.resize(instances,tempVec);
01028   SIM_stdV.resize(instances,tempVec);
01029   SIM_score.resize(instances,tempVec2);
01030   SIM_item.resize(totalSize,0);
01031   configIn.openFile("NPclassify.conf");
01032   polySet.openFile("polySet.conf");
01033   SIM_NP.NPsetup(configIn,polySet,false);
01034   SIM_NP.NPresizeSpace(totalSize,5);
01035 }
01036 
01037 void segmentImageMerge2::SIMclusterColor(Image<PixRGB<float> > image
01038                                          ,int instance)
01039 {
01040   ASSERT(SIM_clusterSet && "You need to set up cluster params first");
01041   PixRGB<float> pix;
01042   Image<PixRGB<float> > newImage;
01043   newImage = decXY(image);
01044   newImage = decXY(newImage);
01045   Image<PixRGB<float> >::iterator inputIter = newImage.beginw();
01046   std::vector<std::vector<float> >::iterator imageVecIter
01047     = SIM_vectorizedImage.begin();
01048 
01049   std::vector<float>::iterator imageVecIterIter;
01050   std::vector<int>::iterator item;
01051 
01052   std::vector<double>::iterator meanHiter;
01053   meanHiter = SIM_meanH[instance].begin();
01054   std::vector<double>::iterator meanSiter;
01055   meanSiter = SIM_meanS[instance].begin();
01056   std::vector<double>::iterator meanViter;
01057   meanViter = SIM_meanV[instance].begin();
01058   std::vector<double>::iterator stdHiter;
01059   stdHiter = SIM_stdH[instance].begin();
01060   std::vector<double>::iterator stdSiter;
01061   stdSiter = SIM_stdS[instance].begin();
01062   std::vector<double>::iterator stdViter;
01063   stdViter = SIM_stdV[instance].begin();
01064   std::vector<float>::iterator scoreIter;
01065   scoreIter = SIM_score[instance].begin();
01066 
01067   // load the image into a vector of size samples*channels (e.g. HSV)
01068   int place = 0;
01069   int width = newImage.getWidth();
01070   float pixH, pixS, pixV;
01071   while(inputIter != newImage.endw())
01072   {
01073     imageVecIterIter = imageVecIter->begin();
01074     pix = *inputIter;
01075     PixHSV<float>(pix).getHSV(pixH,pixS,pixV);
01076     *imageVecIterIter = (pixH/360) * 100 * SIM_blobProp.BP_clusterWeightH;
01077     ++imageVecIterIter;
01078     *imageVecIterIter = pixS * 100 * SIM_blobProp.BP_clusterWeightS;
01079     ++imageVecIterIter;
01080     *imageVecIterIter = (pixV/255) * 100 * SIM_blobProp.BP_clusterWeightV;
01081     ++imageVecIterIter;
01082     *imageVecIterIter = (place/width)* 0.5 * SIM_blobProp.BP_clusterWeightSpat;
01083     ++imageVecIterIter;
01084     *imageVecIterIter = (place%width)* 0.5 * SIM_blobProp.BP_clusterWeightSpat;
01085     ++imageVecIter;
01086     ++inputIter;
01087     place++;
01088   }
01089 
01090   LINFO("RUNNING NEW VECTOR size %"ZU" x %"ZU,SIM_vectorizedImage.size(),
01091         SIM_vectorizedImage[0].size());
01092   /*
01093   Image<double> temp;
01094   temp = SIM_vectorizedImage;
01095   Image<float> temp2;
01096   temp2 = temp;
01097   Raster::VisuFloat(image,0,"temp.pgm");
01098   Raster::VisuFloat(temp2,FLOAT_NORM_0_255,"temp.pgm");
01099   */
01100   // cluster input image
01101   //SIM_NP.NPresetSpace();
01102   SIM_NP.NPaddSpace(SIM_vectorizedImage);
01103   SIM_NP.NPclassifySpaceNew(false);
01104   LINFO("Get Return Info");
01105   //roots = SIM_NP.NPgetStems();
01106   //parents = SIM_NP.NPgetParents();
01107   //density = SIM_NP.NPgetDensity();
01108   double Hsum, HSS;
01109   double Ssum, SSS;
01110   double Vsum, VSS;
01111   float *H = &SIM_H[instance];
01112   float *S = &SIM_S[instance];
01113   float *V = &SIM_V[instance];
01114   SIM_winningScore = 0;
01115   SIM_winningClass = -1;
01116   // get the mean and standard deviation over all clusters
01117   for(int i = 0; i < SIM_NP.NPgetStemNumber(); i++)
01118   {
01119     int classSize = SIM_NP.NPgetClassSize(i);
01120     *scoreIter = 0;
01121     //if(SIM_NP.NPgetMinClassSize() <= classSize)
01122     if(SIM_blobProp.BP_minClusterSize <= classSize)
01123     {
01124       // for each class computer sum and sum squared values over HSV
01125       Hsum = 0.0F; HSS = 0.0F;
01126       item = SIM_item.begin();
01127       for(int cs = 0; cs < classSize; cs++, ++item)
01128       {
01129         *item = SIM_NP.NPgetClass(i,cs);
01130         Hsum += SIM_NP.NPgetFeature(*item,0);
01131         HSS += pow(SIM_NP.NPgetFeature(*item,0),2)/classSize;
01132       }
01133       *meanHiter = Hsum/classSize;
01134       *stdHiter = HSS - pow(*meanHiter,2);
01135       // for each class computer sum and sum squared values over HSV
01136       Ssum = 0.0F; SSS = 0.0F;
01137       item = SIM_item.begin();
01138       for(int cs = 0; cs < classSize; cs++, ++item)
01139       {
01140         Ssum += SIM_NP.NPgetFeature(*item,1);
01141         SSS += pow(SIM_NP.NPgetFeature(*item,1),2)/classSize;
01142       }
01143       *meanSiter = Ssum/classSize;
01144       *stdSiter = SSS - pow(*meanSiter,2);
01145       // for each class computer sum and sum squared values over HSV
01146       Vsum = 0.0F; VSS = 0.0F;
01147       item = SIM_item.begin();
01148       for(int cs = 0; cs < classSize; cs++, ++item)
01149       {
01150         Vsum += SIM_NP.NPgetFeature(*item,2);
01151         VSS += pow(SIM_NP.NPgetFeature(*item,2),2)/classSize;
01152       }
01153       *meanViter = Vsum/classSize;
01154       *stdViter = VSS - pow(*meanViter,2);
01155       // compute the P of this cluster matching the
01156       if((*stdHiter != 0) && (*stdSiter != 0) && (*stdViter != 0))
01157       {
01158         *scoreIter =
01159           ((SIMPgauss(*H,*meanHiter,*stdHiter)*SIM_Hweight)
01160            + (SIMPgauss(*S,*meanSiter,*stdSiter)*SIM_Sweight)
01161            + (SIMPgauss(*V,*meanViter,*stdViter)*SIM_Vweight))
01162           / (SIM_Hweight+SIM_Sweight+SIM_Vweight);
01163       }
01164       else
01165         *scoreIter = 0;
01166       // find out if the P is better for this class, if so, set it
01167       if(*scoreIter > SIM_winningScore)
01168       {
01169         SIM_winningScore = *scoreIter;
01170         SIM_winningClass = i;
01171       }
01172       LINFO("Competetors size %d H %f std %f S %f std %f V %f std %f P %f",
01173             classSize,
01174             *meanHiter,*stdHiter,*meanSiter,*stdSiter,
01175             *meanViter,*stdViter,*scoreIter);
01176     }
01177     ++meanHiter; ++meanSiter; ++meanViter;
01178     ++stdHiter; ++stdSiter; ++stdViter;
01179     ++scoreIter;
01180   }
01181   // if we have a winning class, set tracking colors to it
01182   if(SIM_winningClass != -1)
01183   {
01184     LINFO("WINNER %d H %f std %f S %f std %f V %f std %f",
01185           SIM_winningClass,
01186           SIM_meanH[instance][SIM_winningClass],
01187           SIM_stdH[instance][SIM_winningClass],
01188           SIM_meanS[instance][SIM_winningClass],
01189           SIM_stdS[instance][SIM_winningClass],
01190           SIM_meanV[instance][SIM_winningClass],
01191           SIM_stdV[instance][SIM_winningClass]);
01192 
01193     SIM_segment[instance].SIsetHue(SIM_meanH[instance][SIM_winningClass],
01194                                    SIM_stdH[instance][SIM_winningClass]
01195                                    * SIM_blobProp.BP_clusterColorStdH,0);
01196 
01197     SIM_segment[instance].SIsetSat(SIM_meanS[instance][SIM_winningClass],
01198                                    SIM_stdS[instance][SIM_winningClass]
01199                                    * SIM_blobProp.BP_clusterColorStdS,0);
01200 
01201     SIM_segment[instance].SIsetVal(SIM_meanV[instance][SIM_winningClass],
01202                                    SIM_stdV[instance][SIM_winningClass]
01203                                    * SIM_blobProp.BP_clusterColorStdV,0);
01204   }
01205   SIM_NP.NPresetSpace();
01206 }
01207 
01208 bool segmentImageMerge2::SIMstereoMatch(PixelPoint points[2],
01209                                         CameraParams params[2],
01210                                         Point3D* retPoint)
01211 {
01212     float PI = 3.14159;
01213     float deg2rad = PI/180.0;
01214 
01215     //define the std deviations of the error function(gaussian) for
01216     //various parameters
01217     Point3D* P = (Point3D*)calloc(2, sizeof(Point3D));
01218     P[0] = Point3D(0.0, 0.0, 0.0);
01219     P[1] = Point3D(0.0, 0.0, 0.0);
01220 
01221     Point3D* f = (Point3D*)calloc(2, sizeof(Point3D));
01222     f[0] = Point3D(0.0, 0.0, 0.0);
01223     f[1] = Point3D(0.0, 0.0, 0.0);
01224 
01225     //get ideal case values and max error values
01226     for(int i=0; i<2; i++)
01227     {
01228       P[i].x = params[i].x + params[i].r
01229         * sin(params[i].theta*deg2rad) *cos(params[i].phi*deg2rad)
01230         + points[i].x * cos(params[i].theta*deg2rad)
01231         * cos(params[i].phi*deg2rad)
01232         - points[i].y * sin(params[i].phi*deg2rad);
01233 
01234       P[i].y = params[i].y + params[i].r*sin(params[i].theta*deg2rad)
01235         * sin(params[i].phi*deg2rad)
01236         + points[i].x * cos(params[i].theta*deg2rad)
01237         * sin(params[i].phi*deg2rad)
01238         + points[i].y * cos(params[i].phi*deg2rad);
01239 
01240       P[i].z = params[i].z + params[i].r*cos(params[i].theta*deg2rad)
01241         - points[i].x * sin(params[i].theta*deg2rad);
01242 
01243       f[i].x = params[i].x +params[i].r*sin(params[i].theta*deg2rad)
01244         * cos(params[i].phi*deg2rad)
01245         + params[i].f * sin(params[i].theta*deg2rad)
01246         * cos(params[i].phi*deg2rad);
01247       f[i].y = params[i].y + params[i].r*sin(params[i].theta*deg2rad)
01248         * sin(params[i].phi*deg2rad)
01249         + params[i].f * sin(params[i].theta*deg2rad)
01250         * sin(params[i].phi*deg2rad);
01251       f[i].z = params[i].z + params[i].r*cos(params[i].theta*deg2rad)
01252         + params[i].f * cos(params[i].theta*deg2rad);
01253     }
01254 
01255 
01256     float r1 = ((f[1].z-P[1].z)*(P[0].x-P[1].x)
01257                 - (f[1].x-P[1].x)*(P[0].z-P[1].z))/
01258       ((f[1].x-P[1].x)*(f[0].z-P[0].z)
01259        - (f[1].z-P[1].z)*(f[0].x-P[0].x)+0.0001);
01260 
01261     float r2 = ((f[0].z-P[0].z)*(P[0].x-P[1].x)
01262                 - (f[0].x-P[0].x)*(P[0].z-P[1].z))/
01263       ((f[1].x-P[1].x)*(f[0].z-P[0].z)
01264        - (f[1].z-P[1].z)*(f[0].x-P[0].x)+0.0001);
01265 
01266     float lhs = P[0].y + (f[0].y-P[0].y)*r1;
01267     float rhs = P[1].y + (f[1].y-P[1].y)*r2;
01268 
01269     //printf("Here!!!!\n");
01270     if(lhs-rhs>20 || lhs-rhs<-20)
01271       return false;
01272 
01273     retPoint->x = P[0].x + (f[0].x-P[0].x)*r1;
01274     retPoint->y = (lhs+rhs)/2.0;
01275     retPoint->z = P[0].z + (f[0].z-P[0].z)*r1;
01276     return true;
01277 }
01278 
01279 double segmentImageMerge2::SIMPgauss(double X, double Xbar, double std)
01280 {
01281   double first = 1/(sqrt(2*3.14159*pow(std,2)));
01282   double second = -1*(pow((X - Xbar),2)/(2*pow(std,2)));
01283   return first*exp(second);
01284 }
01285 
01286 
Generated on Sun May 8 08:42:35 2011 for iLab Neuromorphic Vision Toolkit by  doxygen 1.6.3