00001 /*!@file AppNeuro/test-SoxChannel.C Test the SoxChannel class */ 00002 00003 // //////////////////////////////////////////////////////////////////// // 00004 // The iLab Neuromorphic Vision C++ Toolkit - Copyright (C) 2001 by the // 00005 // University of Southern California (USC) and the iLab at USC. // 00006 // See http://iLab.usc.edu for information about this project. // 00007 // //////////////////////////////////////////////////////////////////// // 00008 // Major portions of the iLab Neuromorphic Vision Toolkit are protected // 00009 // under the U.S. patent ``Computation of Intrinsic Perceptual Saliency // 00010 // in Visual Environments, and Applications'' by Christof Koch and // 00011 // Laurent Itti, California Institute of Technology, 2001 (patent // 00012 // pending; application number 09/912,225 filed July 23, 2001; see // 00013 // http://pair.uspto.gov/cgi-bin/final/home.pl for current status). // 00014 // //////////////////////////////////////////////////////////////////// // 00015 // This file is part of the iLab Neuromorphic Vision C++ Toolkit. // 00016 // // 00017 // The iLab Neuromorphic Vision C++ Toolkit is free software; you can // 00018 // redistribute it and/or modify it under the terms of the GNU General // 00019 // Public License as published by the Free Software Foundation; either // 00020 // version 2 of the License, or (at your option) any later version. // 00021 // // 00022 // The iLab Neuromorphic Vision C++ Toolkit is distributed in the hope // 00023 // that it will be useful, but WITHOUT ANY WARRANTY; without even the // 00024 // implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR // 00025 // PURPOSE. See the GNU General Public License for more details. // 00026 // // 00027 // You should have received a copy of the GNU General Public License // 00028 // along with the iLab Neuromorphic Vision C++ Toolkit; if not, write // 00029 // to the Free Software Foundation, Inc., 59 Temple Place, Suite 330, // 00030 // Boston, MA 02111-1307 USA. // 00031 // //////////////////////////////////////////////////////////////////// // 00032 // 00033 // Primary maintainer for this file: Rob Peters <rjpeters@klab.caltech.edu> 00034 // $HeadURL: svn://isvn.usc.edu/software/invt/trunk/saliency/src/AppNeuro/test-SoxChannel.C $ 00035 // $Id: test-SoxChannel.C 9412 2008-03-10 23:10:15Z farhan $ 00036 // 00037 00038 00039 #include "Channels/SoxChannel.H" 00040 #include "Component/ModelManager.H" 00041 #include "Component/ParamMap.H" 00042 #include "Image/ColorOps.H" 00043 #include "Image/DrawOps.H" 00044 #include "Image/LevelSpec.H" 00045 #include "Image/MathOps.H" 00046 #include "Image/Pixels.H" 00047 #include "Image/Range.H" 00048 #include "Image/ShapeOps.H" 00049 #include "Image/fancynorm.H" 00050 #include "Raster/Raster.H" 00051 #include "Util/log.H" 00052 #include "rutz/compat_snprintf.h" 00053 00054 #include <algorithm> 00055 #include <vector> 00056 00057 int main(const int argc, const char** argv) 00058 { 00059 // Instantiate a ModelManager: 00060 ModelManager manager("SoxChannel Tester"); 00061 00062 // Instantiate our various ModelComponents: 00063 nub::soft_ref<SoxChannel> lc(new SoxChannel(manager)); 00064 manager.addSubComponent(lc); 00065 00066 // Parse command-line: 00067 if (manager.parseCommandLine(argc, argv, 00068 "<image.ppm> [scale]", 1, 2) == false) 00069 return(1); 00070 00071 // do post-command-line configs: 00072 int SCALE = 1; 00073 if (manager.numExtraArgs() > 1) SCALE = manager.getExtraArgAs<int>(1); 00074 00075 // let's get all our ModelComponent instances started: 00076 manager.start(); 00077 00078 // read the input image: 00079 const Image<PixRGB<byte> > input = 00080 Raster::ReadRGB(manager.getExtraArg(0)); 00081 00082 lc->input(InputFrame::fromRgb(&input)); 00083 00084 std::vector<Image<float> > lin(lc->numChans()); 00085 std::vector<Image<float> > nonlin(lc->numChans()); 00086 00087 Range<float> lin_rng; 00088 Range<float> nonlin_rng; 00089 00090 for (uint ori = 0; ori < lc->numChans(); ++ori) 00091 { 00092 lin[ori] = lc->getLinearResponse(ori, SCALE); 00093 nonlin[ori] = lc->getNonlinearResponse(ori, SCALE); 00094 00095 lin_rng.merge(rangeOf(lin[ori])); 00096 nonlin_rng.merge(rangeOf(nonlin[ori])); 00097 } 00098 00099 LINFO("lin_rng: [%g, %g]", lin_rng.min(), lin_rng.max()); 00100 LINFO("nonlin_rng: [%g, %g]", nonlin_rng.min(), nonlin_rng.max()); 00101 00102 std::vector<Image<PixRGB<float> > > resps; 00103 00104 // This is a "backwards" range so that we in effect do a binaryReverse() 00105 // when we call remapRange() 00106 Range<float> stdrange(1.0f, 0.0f); 00107 00108 for (uint ori = 0; ori < lc->numChans(); ++ori) 00109 { 00110 lin[ori] = remapRange(lin[ori], lin_rng, stdrange); 00111 nonlin[ori] = remapRange(nonlin[ori], nonlin_rng, stdrange); 00112 00113 char text[256]; text[0] = 0; 00114 00115 if (lin[ori].getWidth() > 50) 00116 snprintf(text, 256, "%d", ori); 00117 00118 int border_width = lin[ori].getWidth() > 25 ? 1 : 0; 00119 00120 resps.push_back(stain(lin[ori], PixRGB<float>(245, 255, 245))); 00121 writeText(resps.back(), Point2D<int>(0,0), text); 00122 inplaceSetBorders(resps.back(), border_width, PixRGB<float>(128, 255, 128)); 00123 00124 resps.push_back(stain(nonlin[ori], PixRGB<float>(245, 245, 255))); 00125 inplaceSetBorders(resps.back(), border_width, PixRGB<float>(128, 128, 255)); 00126 00127 Image<float> diff = (lin[ori] - nonlin[ori]); 00128 00129 Image<PixRGB<float> > cdiff = normalizeRGPolar(diff, 2.0, -2.0); 00130 normalizeC(cdiff, 0, 255); 00131 resps.push_back(cdiff); 00132 inplaceSetBorders(resps.back(), border_width, PixRGB<float>(255, 128, 128)); 00133 } 00134 00135 Image<PixRGB<float> > arr = concatArray(&resps[0], resps.size(), 3); 00136 Raster::VisuRGB(arr, "sox.ppm"); 00137 00138 // get ready for a clean exit: 00139 manager.stop(); 00140 return 0; 00141 } 00142 00143 // ###################################################################### 00144 /* So things look consistent in everyone's emacs... */ 00145 /* Local Variables: */ 00146 /* indent-tabs-mode: nil */ 00147 /* End: */