ObjRecSalBayes.C

Go to the documentation of this file.
00001 /*!@file ObjRec/ObjRecSalBayes.C Obj Reconition using SalBayes
00002  */
00003 
00004 // //////////////////////////////////////////////////////////////////// //
00005 // The iLab Neuromorphic Vision C++ Toolkit - Copyright (C) 2001 by the //
00006 // University of Southern California (USC) and the iLab at USC.         //
00007 // See http://iLab.usc.edu for information about this project.          //
00008 // //////////////////////////////////////////////////////////////////// //
00009 // Major portions of the iLab Neuromorphic Vision Toolkit are protected //
00010 // under the U.S. patent ``Computation of Intrinsic Perceptual Saliency //
00011 // in Visual Environments, and Applications'' by Christof Koch and      //
00012 // Laurent Itti, California Institute of Technology, 2001 (patent       //
00013 // pending; application number 09/912,225 filed July 23, 2001; see      //
00014 // http://pair.uspto.gov/cgi-bin/final/home.pl for current status).     //
00015 // //////////////////////////////////////////////////////////////////// //
00016 // This file is part of the iLab Neuromorphic Vision C++ Toolkit.       //
00017 //                                                                      //
00018 // The iLab Neuromorphic Vision C++ Toolkit is free software; you can   //
00019 // redistribute it and/or modify it under the terms of the GNU General  //
00020 // Public License as published by the Free Software Foundation; either  //
00021 // version 2 of the License, or (at your option) any later version.     //
00022 //                                                                      //
00023 // The iLab Neuromorphic Vision C++ Toolkit is distributed in the hope  //
00024 // that it will be useful, but WITHOUT ANY WARRANTY; without even the   //
00025 // implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR      //
00026 // PURPOSE.  See the GNU General Public License for more details.       //
00027 //                                                                      //
00028 // You should have received a copy of the GNU General Public License    //
00029 // along with the iLab Neuromorphic Vision C++ Toolkit; if not, write   //
00030 // to the Free Software Foundation, Inc., 59 Temple Place, Suite 330,   //
00031 // Boston, MA 02111-1307 USA.                                           //
00032 // //////////////////////////////////////////////////////////////////// //
00033 //
00034 // Primary maintainer for this file: Lior Elazary <elazary@usc.edu>
00035 // $HeadURL: svn://isvn.usc.edu/software/invt/trunk/saliency/src/ObjRec/ObjRecSalBayes.C $
00036 // $Id: ObjRecSalBayes.C 10982 2009-03-05 05:11:22Z itti $
00037 //
00038 
00039 
00040 #include "Component/ModelManager.H"
00041 #include "Image/Image.H"
00042 #include "Image/ImageSet.H"
00043 #include "Image/ShapeOps.H"
00044 #include "Image/CutPaste.H"
00045 #include "Image/DrawOps.H"
00046 #include "Image/FilterOps.H"
00047 #include "Image/ColorOps.H"
00048 #include "Image/Transforms.H"
00049 #include "Image/MathOps.H"
00050 #include "Neuro/StdBrain.H"
00051 #include "Neuro/VisualCortex.H"
00052 #include "Neuro/NeuroOpts.H"
00053 #include "Media/FrameSeries.H"
00054 #include "Transport/FrameInfo.H"
00055 #include "Raster/GenericFrame.H"
00056 #include "Media/TestImages.H"
00057 #include "Media/SceneGenerator.H"
00058 #include "Media/MediaSimEvents.H"
00059 #include "Channels/DescriptorVec.H"
00060 #include "Channels/ComplexChannel.H"
00061 #include "Channels/SubmapAlgorithmBiased.H"
00062 #include "Simulation/SimEventQueue.H"
00063 #include "Simulation/SimulationOpts.H"
00064 #include "Simulation/SimEventQueueConfigurator.H"
00065 #include "Neuro/NeuroSimEvents.H"
00066 #include "GUI/DebugWin.H"
00067 #include "ObjRec/MaskBiaser.H"
00068 #include "ObjRec/ObjRecSalBayes.H"
00069 
00070 // ######################################################################
00071 ObjRecSalBayes::ObjRecSalBayes(ModelManager& mgr, const std::string& descrName,
00072     const std::string& tagName) :
00073   ModelComponent(mgr, descrName, tagName),
00074   itsDebug(false),
00075   itsQ(mgr)
00076 
00077 {
00078 
00079   itsStdBrain = nub::soft_ref<StdBrain>(new StdBrain(mgr));
00080   addSubComponent(itsStdBrain);
00081 
00082   mgr.setOptionValString(&OPT_RawVisualCortexChans, "IOC");
00083   mgr.setOptionValString(&OPT_SaliencyMapType, "Fast");
00084   mgr.setOptionValString(&OPT_SMfastInputCoeff, "1");
00085   mgr.setOptionValString(&OPT_TaskRelevanceMapType, "None");
00086 
00087   mgr.setOptionValString(&OPT_WinnerTakeAllType, "Fast");
00088   //mgr.setOptionValString(&OPT_SimulationTimeStep, "0.2");
00089 
00090   //mgr.setModelParamVal("FOAradius", 50, MC_RECURSE);
00091   //mgr.setModelParamVal("FoveaRadius", 50, MC_RECURSE);
00092 
00093   mgr.setOptionValString(&OPT_IORtype, "Disc");
00094 
00095   itsFoveaRadius = 50; //mgr.getModelParamVal<int>("FoveaRadius", MC_RECURSE);
00096 
00097   itsMgr = &mgr;
00098 
00099 }
00100 
00101 void ObjRecSalBayes::start2()
00102 {
00103   ComplexChannel *cc =
00104     &*dynCastWeak<ComplexChannel>(itsStdBrain->getVC());
00105 
00106   itsDescVec = new DescriptorVec(*itsMgr, "Descriptor Vector", "DecscriptorVec", cc);
00107   //Get  new classifier
00108   itsBayesNet = new Bayes(itsDescVec->getFVSize(), 0);
00109 
00110   itsDescVec->setFoveaSize(itsFoveaRadius);
00111 
00112 }
00113 
00114 ObjRecSalBayes::~ObjRecSalBayes()
00115 {
00116 }
00117 
00118 void ObjRecSalBayes::extractFeatures(const Image<PixRGB<byte> > &img)
00119 {
00120   const int learnNumSacc = 100;
00121   Point2D<int> winner = evolveBrain(img); //evolve the brain
00122   for (int sacc=0; sacc<learnNumSacc; sacc++) //learn the n most salient points in the image
00123   {
00124     //show winner
00125     if (itsDebug){
00126       Image<PixRGB<byte> > tmpImg = img;
00127       drawCircle(tmpImg, winner, 50, PixRGB<byte>(255, 0, 0), 3);
00128       SHOWIMG(tmpImg);
00129     }
00130 
00131     //get the descriptor
00132     itsDescVec->setFovea(winner);
00133 
00134     if (itsDebug){
00135       SHOWIMG(itsDescVec->getFoveaImage());
00136     }
00137 
00138 
00139     itsDescVec->buildRawDV(); //build the descriptor vector
00140 
00141     //get the resulting feature vector
00142     std::vector<double> FV = itsDescVec->getFV();
00143 
00144 
00145     printf("%i %i %i ", sacc, winner.i, winner.j);
00146     for(uint i=0; i<FV.size(); i++)
00147       printf("%f ", FV[i]);
00148     printf("\n");
00149 
00150 
00151     Image<PixRGB<byte> > nullImg;
00152     winner = evolveBrain(nullImg); //evolve the biased brain to get a new winner
00153 
00154   }
00155 
00156 }
00157 
00158 
00159 
00160 
00161 void ObjRecSalBayes::train(const Image<PixRGB<byte> > &img, const std::string label)
00162 {
00163 
00164   const int learnNumSacc = 1;
00165   Point2D<int> winner = evolveBrain(img); //evolve the brain
00166   for (int sacc=0; sacc<learnNumSacc; sacc++) //learn the n most salient points in the image
00167    {
00168     //show winner
00169     if (itsDebug){
00170       Image<PixRGB<byte> > tmpImg = img;
00171       drawCircle(tmpImg, winner, 50, PixRGB<byte>(255, 0, 0), 3);
00172       SHOWIMG(tmpImg);
00173     }
00174 
00175     //get the descriptor
00176     itsDescVec->setFovea(winner);
00177 
00178     if (itsDebug){
00179       SHOWIMG(itsDescVec->getFoveaImage());
00180     }
00181 
00182 
00183     itsDescVec->buildRawDV(); //build the descriptor vector
00184 
00185     //get the resulting feature vector
00186     std::vector<double> FV = itsDescVec->getFV();
00187 
00188 
00189    /* char filename[255];
00190     sprintf(filename, "results/%i.ppm", id++);
00191     Raster::WriteRGB(itsDescVec.getFoveaImage(), filename);
00192     printf("DV %i %s %i %ix%i: ",id, objName, sacc, winner.i, winner.j);
00193     for(uint i=0; i<FV.size(); i++)
00194       printf("%f ", FV[i]);
00195     printf("\n");*/
00196 
00197     printf("OD: '%s'  %i %i %i ",label.c_str(), sacc, winner.i, winner.j);
00198     for(uint i=0; i<FV.size(); i++)
00199       printf("%f ", FV[i]);
00200 
00201 
00202     itsBayesNet->learn(FV, label.c_str());
00203 
00204      Image<PixRGB<byte> > nullImg;
00205      winner = evolveBrain(nullImg); //evolve the biased brain to get a new winner
00206 
00207    }
00208 
00209 }
00210 
00211 void ObjRecSalBayes::finalizeTraining()
00212 {
00213 
00214 }
00215 
00216 std::string ObjRecSalBayes::predict(const Image<PixRGB<byte> > &img)
00217 {
00218 
00219   double prob = 0, statSig = 0;
00220   Point2D<int> winner = evolveBrain(img); //evolve the brain
00221 
00222   //show winner
00223   if (itsDebug){
00224     Image<PixRGB<byte> > tmpImg = img;
00225     drawCircle(tmpImg, winner, 50, PixRGB<byte>(255, 0, 0), 3);
00226     SHOWIMG(tmpImg);
00227   }
00228   //get the descriptor
00229   itsDescVec->setFovea(winner);
00230   itsDescVec->buildRawDV(); //build the descriptor vector
00231 
00232   //get the resulting feature vector
00233   std::vector<double> FV = itsDescVec->getFV();
00234 
00235   // printf("%i %i ", winner.i, winner.j);
00236   //  for(uint i=0; i<FV.size(); i++)
00237   //     printf("%f ", FV[i]);
00238 
00239   //classify
00240 
00241   int cls = -1;
00242   cls = itsBayesNet->classify(FV);
00243 
00244   statSig = itsBayesNet->getStatSig(FV, 0); //get the statistical significance
00245   LINFO("Class %i prob: %f %f\n", cls, prob, statSig);
00246 
00247   if (cls == -1) //check for errors
00248     return std::string("NOMATCH");
00249 
00250   std::string clsName(itsBayesNet->getClassName(cls));
00251 
00252   return clsName;
00253 }
00254 
00255 
00256 Point2D<int> ObjRecSalBayes::evolveBrain(const Image<PixRGB<byte> > &img)
00257 {
00258 
00259 
00260   LINFO("Evolve Brain");
00261 
00262   if (img.initialized())
00263   {
00264     //place the image in the inputFrame queue
00265     rutz::shared_ptr<SimEventInputFrame>
00266       e(new SimEventInputFrame(itsStdBrain.get(), GenericFrame(img), 0));
00267     itsQ.post(e);
00268     // brain->input(img, seq);
00269     itsDescVec->setInputImg(img);
00270   }
00271 
00272   SimTime end_time = itsQ.now() + SimTime::MSECS(3.0);
00273 
00274   while (itsQ.now() < end_time)
00275   {
00276     itsStdBrain->evolve(itsQ); //evolve the brain
00277 
00278     // Any new WTA winner?
00279     if (SeC<SimEventWTAwinner> e =
00280         itsQ.check<SimEventWTAwinner>(itsStdBrain.get()))
00281     {
00282       const Point2D<int> winner = e->winner().p;
00283 
00284       //get the saliency map output
00285       if (itsDebug)
00286       {
00287         if (SeC<SimEventSaliencyMapOutput> smo =
00288             itsQ.check<SimEventSaliencyMapOutput>(itsStdBrain.get(), SEQ_ANY))
00289         {
00290           Image<float> img = smo->sm();
00291           SHOWIMG(rescale(img, img.getWidth()*16, img.getHeight()*16));
00292         }
00293       }
00294       while (itsQ.now() < end_time)
00295         itsQ.evolve();
00296 
00297       return winner;
00298     }
00299 
00300     itsQ.evolve();
00301 
00302   }
00303   return Point2D<int>();
00304 }
00305 
00306 
00307 
00308 // ######################################################################
00309 /* So things look consistent in everyone's emacs... */
00310 /* Local Variables: */
00311 /* indent-tabs-mode: nil */
00312 /* End: */
Generated on Sun May 8 08:41:08 2011 for iLab Neuromorphic Vision Toolkit by  doxygen 1.6.3