00001 /*!@file SceneUnderstanding/V4d.H non-accidental features */ 00002 00003 // //////////////////////////////////////////////////////////////////// // 00004 // The iLab Neuromorphic Vision C++ Toolkit - Copyright (C) 2000-2005 // 00005 // by the University of Southern California (USC) and the iLab at USC. // 00006 // See http://iLab.usc.edu for information about this project. // 00007 // //////////////////////////////////////////////////////////////////// // 00008 // Major portions of the iLab Neuromorphic Vision Toolkit are protected // 00009 // under the U.S. patent ``Computation of Intrinsic Perceptual Saliency // 00010 // in Visual Environments, and Applications'' by Christof Koch and // 00011 // Laurent Itti, California Institute of Technology, 2001 (patent // 00012 // pending; application number 09/912,225 filed July 23, 2001; see // 00013 // http://pair.uspto.gov/cgi-bin/final/home.pl for current status). // 00014 // //////////////////////////////////////////////////////////////////// // 00015 // This file is part of the iLab Neuromorphic Vision C++ Toolkit. // 00016 // // 00017 // The iLab Neuromorphic Vision C++ Toolkit is free software; you can // 00018 // redistribute it and/or modify it under the terms of the GNU General // 00019 // Public License as published by the Free Software Foundation; either // 00020 // version 2 of the License, or (at your option) any later version. // 00021 // // 00022 // The iLab Neuromorphic Vision C++ Toolkit is distributed in the hope // 00023 // that it will be useful, but WITHOUT ANY WARRANTY; without even the // 00024 // implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR // 00025 // PURPOSE. See the GNU General Public License for more details. // 00026 // // 00027 // You should have received a copy of the GNU General Public License // 00028 // along with the iLab Neuromorphic Vision C++ Toolkit; if not, write // 00029 // to the Free Software Foundation, Inc., 59 Temple Place, Suite 330, // 00030 // Boston, MA 02111-1307 USA. // 00031 // //////////////////////////////////////////////////////////////////// // 00032 // 00033 // Primary maintainer for this file: Lior Elazary <elazary@usc.edu> 00034 // $HeadURL: svn://isvn.usc.edu/software/invt/trunk/saliency/src/plugins/SceneUnderstanding/V4d.H $ 00035 // $Id: V4d.H 13765 2010-08-06 18:56:17Z lior $ 00036 // 00037 00038 #ifndef V4d_H_DEFINED 00039 #define V4d_H_DEFINED 00040 00041 //#include "Image/OpenCVUtil.H" // must be first to avoid conflicting defs of int64, uint64 00042 00043 #include "Image/Image.H" 00044 #include "Image/ImageSet.H" 00045 #include "Image/Pixels.H" 00046 #include "Image/Layout.H" 00047 #include "Image/Point3D.H" 00048 #include "plugins/SceneUnderstanding/Camera.H" 00049 //#include "plugins/SceneUnderstanding/V4.H" 00050 #include "plugins/SceneUnderstanding/V4d.H" 00051 #include "plugins/SceneUnderstanding/V2.H" 00052 #include "Simulation/SimEvents.H" 00053 #include "Simulation/SimModule.H" 00054 #include "SIFT/Histogram.H" 00055 #include "Util/WorkThreadServer.H" 00056 00057 #include <vector> 00058 #include <string> 00059 #include <queue> 00060 #include <google/dense_hash_map> 00061 using google::dense_hash_map; 00062 00063 class SimEventV4BiasOutput; 00064 00065 class V4d : public SimModule 00066 { 00067 public: 00068 00069 enum NAF_TYPE {RIGHT_VERTIX,VERTIX, ARC}; 00070 00071 struct NAFState 00072 { 00073 Point3D<float> pos; 00074 float rot; 00075 NAF_TYPE featureType; 00076 Point3D<float> posSigma; 00077 float rotSigma; 00078 00079 double prob; 00080 double weight; 00081 00082 NAFState () {} 00083 00084 NAFState (Point3D<float> p, float r, NAF_TYPE ft, Point3D<float> ps, float rs) : 00085 pos(p), rot(r), featureType(ft), 00086 posSigma(ps), rotSigma(rs), 00087 prob(0), weight(0) 00088 {} 00089 00090 double distance(const NAFState &nafState) 00091 { 00092 double dist = 1.0e100; 00093 if (nafState.featureType == featureType) 00094 { 00095 double dPoint = pos.squdist(nafState.pos); 00096 double dRot = nafState.rot - rot; 00097 dRot = acos(cos(nafState.rot - rot)); 00098 00099 dist = sqrt(dPoint + (dRot*dRot)); 00100 } else { 00101 dist = 1.0e100; //can not compare the distance across features for now 00102 } 00103 00104 return dist; 00105 } 00106 }; 00107 00108 struct RTableEntry 00109 { 00110 Point2D<int> loc; 00111 float rot; 00112 }; 00113 00114 struct FeatureTemplate 00115 { 00116 std::vector<V1::EdgeState> edges; 00117 std::vector<Point3D<float> > outline; 00118 std::vector<Point3D<float> > var; 00119 std::vector<RTableEntry> rTable; 00120 NAF_TYPE featureType; 00121 }; 00122 00123 struct GHTAcc 00124 { 00125 Point2D<int> pos; 00126 int ang; 00127 int scale; 00128 NAF_TYPE featureType; 00129 float sum; 00130 00131 bool operator<(const GHTAcc& acc) const 00132 { 00133 return sum < acc.sum; 00134 } 00135 }; 00136 00137 V4d(OptionManager& mgr, const std::string& descrName = "V4", 00138 const std::string& tagName = "V4"); 00139 00140 //! Destructor 00141 ~V4d(); 00142 00143 //! Align template so that center of mass is at 0,0 00144 void alignToCenterOfMass(FeatureTemplate& featureTemplate); 00145 00146 void buildRTables(); 00147 00148 //void setBias(std::vector<V4d::NAFState> bias); 00149 00150 void evolve(); 00151 void evolveSift(); 00152 00153 float calculateOrientationVector(Point2D<int>& loc, Histogram& OV); 00154 float createDescriptor(Point2D<int>& loc, Histogram& OV, float mainOri); 00155 00156 void harrisDetector(std::vector<V4d::GHTAcc>& accRet, const FeatureTemplate& featureTemplate); 00157 void proposeParticlesHarris(std::vector<NAFState>& particles, const double Neff); 00158 00159 00160 Layout<PixRGB<byte> > getDebugImage(); 00161 00162 void getParticleLikelihood(NAFState& particle); 00163 double getLineProbability(const Point2D<int>& p1, const Point2D<int>& p2); 00164 00165 void resampleParticles(std::vector<NAFState>& particles); 00166 void resampleParticles2(std::vector<NAFState>& particles); 00167 void proposeParticles(std::vector<NAFState>& particles, const double Neff); 00168 float evaluateParticles(std::vector<NAFState>& particles); 00169 00170 00171 std::vector<Point2D<int> > getImageOutline(NAFState& nafState); 00172 00173 void findAngMerge(std::vector<GHTAcc>& acc, const NAFState& nafState, std::vector<GHTAcc> tmpAcc); 00174 void mergeBias(std::vector<GHTAcc>& acc); 00175 00176 00177 00178 void GHT(std::vector<GHTAcc>& accRet, const FeatureTemplate& featureTemplate); 00179 float voteForFeature(Image<float>& acc, int angIdx, std::vector<V1::EdgeState>& rTable); 00180 00181 void normalizeAcc(std::vector<GHTAcc>& acc); 00182 00183 Image<PixRGB<byte> > showParticles(const std::vector<NAFState>& particles); 00184 00185 protected: 00186 //! Callback for when a new ganglion output is ready 00187 SIMCALLBACK_DECLARE(V4d, SimEventV2Output); 00188 00189 //! Callback for every time we should save our outputs 00190 SIMCALLBACK_DECLARE(V4d, SimEventSaveOutput); 00191 00192 //! Callback for every time we have a user event 00193 SIMCALLBACK_DECLARE(V4d, SimEventUserInput); 00194 00195 // //! Callback for getting bias 00196 SIMCALLBACK_DECLARE(V4d, SimEventV4BiasOutput); 00197 00198 //! Should we show our debug info 00199 OModelParam<bool> itsShowDebug; 00200 00201 private: 00202 00203 std::vector<V1::EdgeState> itsEdgesState; 00204 std::priority_queue<V2::CornerState> itsCornersState; 00205 dense_hash_map<int, V1::EdgeState> itsHashedEdgesState; 00206 00207 float itsMaxVal; 00208 int itsGHTAngStep; 00209 double itsBestProb; 00210 float itsObjectsDist; //Objects distance from the camera from the camera 00211 00212 Camera itsCamera; 00213 std::vector<FeatureTemplate> itsNAFeatures; 00214 00215 std::vector<NAFState> itsFeaturesParticles; 00216 std::vector<NAFState> itsBias; 00217 00218 rutz::shared_ptr<WorkThreadServer> itsThreadServer; 00219 00220 //Images for debug 00221 //Image<float> itsHoughSpaceImg; 00222 Image<PixRGB<byte> > itsDebugImg; 00223 00224 }; 00225 00226 /* ############################### V4d sim events ######################## */ 00227 class SimEventV4dOutput : public SimEvent 00228 { 00229 public: 00230 SimEventV4dOutput(SimModule* src, std::vector<V4d::NAFState>& cellsOutput) : 00231 SimEvent(src), itsCells(cellsOutput) 00232 {} 00233 00234 virtual ~SimEventV4dOutput(){} 00235 std::vector<V4d::NAFState> getCells() { return itsCells; } 00236 00237 private: 00238 const std::vector<V4d::NAFState>& itsCells; 00239 }; 00240 00241 class SimEventV4BiasOutput : public SimEvent 00242 { 00243 public: 00244 SimEventV4BiasOutput(SimModule* src, std::vector<V4d::NAFState>& cellsOutput) : 00245 SimEvent(src), itsCells(cellsOutput) 00246 {} 00247 00248 virtual ~SimEventV4BiasOutput(){} 00249 std::vector<V4d::NAFState> getCells() { return itsCells; } 00250 00251 private: 00252 const std::vector<V4d::NAFState>& itsCells; 00253 }; 00254 00255 00256 // ###################################################################### 00257 /* So things look consistent in everyone's emacs... */ 00258 /* Local Variables: */ 00259 /* indent-tabs-mode: nil */ 00260 /* End: */ 00261 00262 #endif //