fancynorm.C File Reference

#include "Image/fancynorm.H"
#include "Util/Assert.H"
#include "Image/Image.H"
#include "Image/ImageSet.H"
#include "Image/FilterOps.H"
#include "Image/Kernels.H"
#include "Image/MathOps.H"
#include "Image/ShapeOps.H"
#include "Image/Transforms.H"
#include "Image/PyramidOps.H"
#include "Util/StringConversions.H"
#include "Util/log.H"
#include "rutz/compat_cmath.h"
#include "rutz/trace.h"
#include <algorithm>
#include <cmath>
#include "inst/Image/fancynorm.I"
Include dependency graph for fancynorm.C:
This graph shows which files directly or indirectly include this file:

Go to the source code of this file.

Functions

template<class T >
Image< T > maxNormalize (const Image< T > &src, const T mi, const T ma, const MaxNormType normtyp, int nbiter, const Image< float > *lrexcit)
 Generic implementation (select algorithm with normtyp).
template<class T >
Image< T > maxNormalizeNone (const Image< T > &src, const T mi, const T ma)
 Specialized implementation (corresponds to VCXNORM_NONE).
template<class T >
Image< T > maxNormalizeStd (const Image< T > &src, const T mi, const T ma)
 Specialized implementation (corresponds to VCXNORM_MAXNORM).
template<class T >
Image< T > maxNormalizeFancyFast (const Image< T > &src, const T mi, const T ma, const int nbiter)
 Specialized implementation (corresponds to VCXNORM_FANCYFAST).
template<class T >
Image< T > maxNormalizeFancy (const Image< T > &src, const T mi, const T ma, const int nbiter, const double weakness, const Image< float > *lrexcit)
 Specialized implementation (corresponds to VCXNORM_FANCY).
template<class T >
Image< T > maxNormalizeFancyLandmark (const Image< T > &src, const T mi, const T ma, const int nbiter)
 Specialized implementation (corresponds to VCXNORM_FANCY).
template<class T >
Image< T > maxNormalizeLandmark (const Image< T > &src, const T mi, const T ma)
 Specialized implementation (corresponds to VCXNORM_LANDMARK).
template<class T >
int findPeaks (const Image< T > &src, const T mi, const T ma, double &sum_activity)
 to find number of peaks in the image (used in landmark detection)
template<class T >
float goodness_map (const Image< T > &src)
 to find the goodness of a map (used in landmark detection)
template<class T >
Image< T > maxNormalizeStdev (const Image< T > &src)
 Specialized implementation (corresponds to VCXNORM_STDEV).
template<class T >
Image< T > maxNormalizeStdev0 (const Image< T > &src)
 Specialized implementation (corresponds to VCXNORM_STDEV0).
std::string convertToString (const MaxNormType val)
 MaxNormType overload.
void convertFromString (const std::string &str, MaxNormType &val)
 MaxNormType overload.

Detailed Description

Intrafeature competition with maxNormalize().

Definition in file fancynorm.C.


Function Documentation

void convertFromString ( const std::string str,
MaxNormType val 
)

MaxNormType overload.

Format is "name" as defined by maxNormTypeName() in MaxNormTypes.H

Definition at line 638 of file fancynorm.C.

References maxNormTypeName(), and NBMAXNORMTYPES.

std::string convertToString ( const MaxNormType  val  ) 

MaxNormType overload.

Format is "name" as defined by maxNormTypeName() in MaxNormTypes.H

Definition at line 632 of file fancynorm.C.

References maxNormTypeName().

Generated on Sun May 8 08:42:41 2011 for iLab Neuromorphic Vision Toolkit by  doxygen 1.6.3