VisualCortexEyeMvt.C

Go to the documentation of this file.
00001 /*!@file Neuro/VisualCortexEyeMvt.C Implementation for the fake
00002   human-eye-movement visual cortex class */
00003 
00004 // //////////////////////////////////////////////////////////////////// //
00005 // The iLab Neuromorphic Vision C++ Toolkit - Copyright (C) 2001 by the //
00006 // University of Southern California (USC) and the iLab at USC.         //
00007 // See http://iLab.usc.edu for information about this project.          //
00008 // //////////////////////////////////////////////////////////////////// //
00009 // Major portions of the iLab Neuromorphic Vision Toolkit are protected //
00010 // under the U.S. patent ``Computation of Intrinsic Perceptual Saliency //
00011 // in Visual Environments, and Applications'' by Christof Koch and      //
00012 // Laurent Itti, California Institute of Technology, 2001 (patent       //
00013 // pending; application number 09/912,225 filed July 23, 2001; see      //
00014 // http://pair.uspto.gov/cgi-bin/final/home.pl for current status).     //
00015 // //////////////////////////////////////////////////////////////////// //
00016 // This file is part of the iLab Neuromorphic Vision C++ Toolkit.       //
00017 //                                                                      //
00018 // The iLab Neuromorphic Vision C++ Toolkit is free software; you can   //
00019 // redistribute it and/or modify it under the terms of the GNU General  //
00020 // Public License as published by the Free Software Foundation; either  //
00021 // version 2 of the License, or (at your option) any later version.     //
00022 //                                                                      //
00023 // The iLab Neuromorphic Vision C++ Toolkit is distributed in the hope  //
00024 // that it will be useful, but WITHOUT ANY WARRANTY; without even the   //
00025 // implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR      //
00026 // PURPOSE.  See the GNU General Public License for more details.       //
00027 //                                                                      //
00028 // You should have received a copy of the GNU General Public License    //
00029 // along with the iLab Neuromorphic Vision C++ Toolkit; if not, write   //
00030 // to the Free Software Foundation, Inc., 59 Temple Place, Suite 330,   //
00031 // Boston, MA 02111-1307 USA.                                           //
00032 // //////////////////////////////////////////////////////////////////// //
00033 //
00034 // Primary maintainer for this file: Laurent Itti <itti@usc.edu>
00035 // $HeadURL: svn://isvn.usc.edu/software/invt/trunk/saliency/src/Neuro/VisualCortexEyeMvt.C $
00036 // $Id: VisualCortexEyeMvt.C 13065 2010-03-28 00:01:00Z itti $
00037 //
00038 
00039 #include "Neuro/VisualCortexEyeMvt.H"
00040 
00041 #include "Channels/InputFrame.H"
00042 #include "Channels/ChannelOpts.H"
00043 #include "Component/OptionManager.H"
00044 #include "Image/Kernels.H"    // for gaussianBlob()
00045 #include "Image/MathOps.H"    // for takeMax()
00046 #include "Media/MediaOpts.H"  // for OPT_InputFrameDims
00047 #include "Neuro/NeuroOpts.H"
00048 #include "Neuro/NeuroSimEvents.H"
00049 #include "Psycho/EyeTrace.H"
00050 #include "Simulation/SimEventQueue.H"
00051 #include "Transport/FrameInfo.H"
00052 #include "Transport/FrameOstream.H"
00053 #include "Util/SimTime.H"
00054 #include "Util/sformat.H"
00055 #include "Util/StringUtil.H"
00056 
00057 #include <algorithm>
00058 #include <cctype>
00059 #include <cstdio>
00060 
00061 // ######################################################################
00062 VisualCortexEyeMvt::VisualCortexEyeMvt(OptionManager& mgr,
00063                                        const std::string& descrName,
00064                                        const std::string& tagName) :
00065   VisualCortex(mgr, descrName, tagName),
00066   SIMCALLBACK_INIT(SimEventClockTick),
00067   SIMCALLBACK_INIT(SimEventRetinaImage),
00068   SIMCALLBACK_INIT(SimEventSaveOutput),
00069   SIMREQHANDLER_INIT(SimReqVCXfeatures),
00070   SIMREQHANDLER_INIT(SimReqVCXmaps),
00071   itsFnames(&OPT_VCEMeyeFnames, this),
00072   itsSigma(&OPT_VCEMsigma, this),
00073   itsForgetFac(&OPT_VCEMforgetFac, this),
00074   itsDelay(&OPT_VCEMdelay, this),
00075   itsUseMax(&OPT_VCEMuseMax, this),
00076   itsSaccadeOnly(&OPT_VCEMsaccadeOnly, this),
00077   itsLevelSpec(&OPT_LevelSpec, this),
00078   itsSaveOutput(&OPT_RawVisualCortexSaveOutput, this),// see Neuro/NeuroOpts.{H,C}
00079   itsOutputFactor(&OPT_RawVisualCortexOutputFactor, this),
00080   itsMaps(), itsEyeTrace(), itsEyeSample(), itsOutputCache()
00081 {  }
00082 
00083 // ######################################################################
00084 VisualCortexEyeMvt::~VisualCortexEyeMvt()
00085 {  }
00086 
00087 // ######################################################################
00088 void VisualCortexEyeMvt::start1()
00089 {
00090   VisualCortex::start1();
00091 
00092   // parse our filename config string and instantiate all our eye traces:
00093   std::vector<std::string> tok;
00094   split(itsFnames.getVal(), ",", std::back_inserter(tok));
00095   if (tok.empty()) LFATAL("I cannot run without at least one eyetrace.");
00096 
00097   for (uint i = 0; i < tok.size(); i ++)
00098     {
00099       LINFO("Instantiating EyeTrace %03d with file '%s'", i, tok[i].c_str());
00100       rutz::shared_ptr<EyeTrace> et(new EyeTrace(tok[i], PixRGB<byte>(255)));
00101       itsEyeTrace.push_back(et);
00102       itsEyeSample.push_back(itsDelay.getVal());
00103     }
00104 
00105   // create empty maps:
00106   itsMaps.reset(itsEyeTrace.size());
00107 }
00108 
00109 // ######################################################################
00110 void VisualCortexEyeMvt::
00111 onSimEventClockTick(SimEventQueue& q, rutz::shared_ptr<SimEventClockTick>& e)
00112 {
00113   const SimTime t = q.now();
00114   const uint sml = itsLevelSpec.getVal().mapLevel();
00115 
00116   // do some forgetting:
00117   if (itsForgetFac.getVal() != 1.0f) {
00118     for (uint i = 0; i < itsMaps.size(); ++i) itsMaps[i] *= itsForgetFac.getVal();
00119     itsOutputCache.freeMem();
00120   }
00121 
00122   // evolve all our eye traces and see what they have:
00123   bool keepgoing = true;
00124   while(keepgoing) { // will go on until no tracker has any new data
00125     keepgoing = false;
00126 
00127     // loop over our eye traces:
00128     for (uint i = 0; i < itsEyeTrace.size(); i ++)
00129       if (itsEyeTrace[i]->hasData(itsEyeSample[i] - itsDelay.getVal(), t)) {
00130         // ok, this warrants that we continue our while() loop:
00131         keepgoing = true;
00132 
00133         // get the next data sample:
00134         rutz::shared_ptr<EyeData> data = itsEyeTrace[i]->data(itsEyeSample[i]);
00135 
00136         CLDEBUG("Eye trace %03u [%07"ZU"] (%d, %d) at %.1fms",
00137                 i, itsEyeSample[i], data->position().i, data->position().j,
00138                 itsEyeSample[i] * itsEyeTrace[i]->period().msecs());
00139 
00140         // stop here if we are only interested in saccades but there is
00141         // not one now, otherwise use the saccade endpoint for our
00142         // plots; if not only interested in saccades, use all samples:
00143         float ex, ey;
00144         if (itsSaccadeOnly.getVal()) {
00145           if (data->hasSaccadeTargetData() == false) { ++ itsEyeSample[i]; continue; }
00146           data->getSaccadeTarget(ex, ey);
00147         } else data->getPosition(ex, ey);
00148 
00149         // convert eye coords to scale of saliency map:
00150         Point2D<int> p(int(ex / float(1 << sml) + 0.4999f), int(ey / float(1 << sml) + 0.4999f));
00151 
00152         // inject new blob if valid coords:
00153         if (itsMaps[i].coordsOk(p))
00154           {
00155             if (itsSigma.getVal() > 0.0f)
00156               {
00157                 // draw a blob at current eye:
00158                 Image<float> blob = gaussianBlob<float>(itsMaps[i].getDims(), p, itsSigma.getVal(), itsSigma.getVal());
00159 
00160                 // take max between current and old blobs:
00161                 itsMaps[i] = takeMax(itsMaps[i], blob);
00162               }
00163             else
00164               // single spike mode:
00165               itsMaps[i].setVal(p, itsMaps[i].getVal(p) + 1.0f);
00166 
00167             // our maps have changed, hence our output cache is now invalid:
00168             itsOutputCache.freeMem();
00169           }
00170 
00171         // ready for next eye movement sample:
00172         ++ itsEyeSample[i];
00173       }
00174   }
00175 }
00176 
00177 // ######################################################################
00178 void VisualCortexEyeMvt::
00179 onSimEventRetinaImage(SimEventQueue& q, rutz::shared_ptr<SimEventRetinaImage>& e)
00180 {
00181   // start new maps fresh if first time:
00182   if (itsMaps[0].initialized() == false)
00183     {
00184       // compute map dims:
00185       const int w = e->frame().getWidth() >> itsLevelSpec.getVal().mapLevel();
00186       const int h = e->frame().getHeight() >> itsLevelSpec.getVal().mapLevel();
00187 
00188       for (uint i = 0; i < itsMaps.size(); i ++) itsMaps[i].resize(w, h, true);
00189 
00190       // invalidate our output cache
00191       itsOutputCache.freeMem();
00192     }
00193 
00194   // Our internal maps change at every clock tick, but it may be a bit
00195   // too intensive to post a new VisualCortexOutput SimEvent at that
00196   // rate. So instead we will do it only each time there is a new
00197   // input frame, like other VisualCortex derivatives do:
00198   q.post(rutz::make_shared(new SimEventVisualCortexOutput(this, getOutput())));
00199 }
00200 
00201 // ######################################################################
00202 void VisualCortexEyeMvt::handleSimReqVCXfeatures(SimEventQueue& q, rutz::shared_ptr<SimReqVCXfeatures>& r)
00203 {
00204   // just return a single feature, our map value at the requested location:
00205   const uint sml = itsLevelSpec.getVal().mapLevel();
00206   const Image<float> out = getOutput();
00207   Point2D<int> p((r->loc().i + sml/2) >> sml, (r->loc().j + sml/2) >> sml);
00208   if (out.coordsOk(p)) r->features().push_back(out.getVal(p));
00209   else r->features().push_back(0.0F);
00210 }
00211 
00212 // ######################################################################
00213 void VisualCortexEyeMvt::handleSimReqVCXmaps(SimEventQueue& q, rutz::shared_ptr<SimReqVCXmaps>& r)
00214 {
00215   r->populateChannelMaps(this);
00216 }
00217 
00218 // ######################################################################
00219 Image<float> VisualCortexEyeMvt::getOutput()
00220 {
00221   // do we already have it cached?
00222   if (itsOutputCache.initialized()) return itsOutputCache;
00223 
00224   // compute output from all human maps:
00225   Image<float> out = itsMaps[0];
00226   if (itsUseMax.getVal()) for (uint idx = 1; idx < itsMaps.size(); idx ++) out = takeMax(out, itsMaps[idx]);
00227   else for (uint idx = 1; idx < itsMaps.size(); idx ++) out += itsMaps[idx];
00228 
00229   // output is now typically in the (0.0..0.1) range; we want saliency map input current in nA:
00230   out *= 50.0f * itsOutputFactor.getVal();
00231   float mi, ma; getMinMax(out, mi, ma);
00232   LINFO("Salmap input range is [%f .. %f] nA", mi * 1.0e9F, ma * 1.0e9F);
00233   LINFO("Computed VisualCortex output.");
00234 
00235   itsOutputCache = out;
00236 
00237   return out;
00238 }
00239 
00240 // ######################################################################
00241 void VisualCortexEyeMvt::onSimEventSaveOutput(SimEventQueue& q, rutz::shared_ptr<SimEventSaveOutput>& e)
00242 {
00243   // get the OFS to save to, assuming sinfo is of type
00244   // SimModuleSaveInfo (will throw a fatal exception otherwise):
00245   nub::ref<FrameOstream> ofs = dynamic_cast<const SimModuleSaveInfo&>(e->sinfo()).ofs;
00246 
00247   // save our own output:
00248   if (itsSaveOutput.getVal())
00249     ofs->writeFloat(getOutput(), FLOAT_NORM_PRESERVE, "VCO",
00250                     FrameInfo("visual cortex eyemvt output (input to saliency map)", SRC_POS));
00251 }
00252 
00253 // ######################################################################
00254 /* So things look consistent in everyone's emacs... */
00255 /* Local Variables: */
00256 /* indent-tabs-mode: nil */
00257 /* End: */
Generated on Sun May 8 08:41:07 2011 for iLab Neuromorphic Vision Toolkit by  doxygen 1.6.3