AttentionGate.C

00001 /*!@file Neuro/AttentionGuidanceMap.C Implementation for task-relevance map class */
00002 
00003 // //////////////////////////////////////////////////////////////////// //
00004 // The iLab Neuromorphic Vision C++ Toolkit - Copyright (C) 2001 by the //
00005 // University of Southern California (USC) and the iLab at USC.         //
00006 // See http://iLab.usc.edu for information about this project.          //
00007 // //////////////////////////////////////////////////////////////////// //
00008 // Major portions of the iLab Neuromorphic Vision Toolkit are protected //
00009 // under the U.S. patent ``Computation of Intrinsic Perceptual Saliency //
00010 // in Visual Environments, and Applications'' by Christof Koch and      //
00011 // Laurent Itti, California Institute of Technology, 2001 (patent       //
00012 // pending; application number 09/912,225 filed July 23, 2001; see      //
00013 // http://pair.uspto.gov/cgi-bin/final/home.pl for current status).     //
00014 // //////////////////////////////////////////////////////////////////// //
00015 // This file is part of the iLab Neuromorphic Vision C++ Toolkit.       //
00016 //                                                                      //
00017 // The iLab Neuromorphic Vision C++ Toolkit is free software; you can   //
00018 // redistribute it and/or modify it under the terms of the GNU General  //
00019 // Public License as published by the Free Software Foundation; either  //
00020 // version 2 of the License, or (at your option) any later version.     //
00021 //                                                                      //
00022 // The iLab Neuromorphic Vision C++ Toolkit is distributed in the hope  //
00023 // that it will be useful, but WITHOUT ANY WARRANTY; without even the   //
00024 // implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR      //
00025 // PURPOSE.  See the GNU General Public License for more details.       //
00026 //                                                                      //
00027 // You should have received a copy of the GNU General Public License    //
00028 // along with the iLab Neuromorphic Vision C++ Toolkit; if not, write   //
00029 // to the Free Software Foundation, Inc., 59 Temple Place, Suite 330,   //
00030 // Boston, MA 02111-1307 USA.                                           //
00031 // //////////////////////////////////////////////////////////////////// //
00032 //
00033 // Primary maintainer for this file: Laurent Itti <itti@usc.edu>
00034 // $HeadURL: svn://isvn.usc.edu/software/invt/trunk/saliency/src/Neuro/AttentionGate.C $
00035 // $Id: AttentionGate.C 13065 2010-03-28 00:01:00Z itti $
00036 //
00037 
00038 #include "Neuro/AttentionGate.H"
00039 
00040 #include "Channels/ChannelBase.H"
00041 #include "Channels/ChannelMaps.H"
00042 #include "Component/OptionManager.H"
00043 #include "Image/Image.H"
00044 #include "Image/MathOps.H"
00045 #include "Image/ShapeOps.H"  // for rescale()
00046 #include "Media/MediaSimEvents.H"
00047 #include "Neuro/NeuroOpts.H"
00048 #include "Neuro/VisualCortex.H"
00049 #include "Simulation/SimEventQueue.H"
00050 #include "Transport/FrameInfo.H"
00051 #include "Transport/FrameOstream.H"
00052 #include "Util/log.H"
00053 
00054 // ######################################################################
00055 // ######################################################################
00056 // ########## AttentionGuidanceMap implementation
00057 // ######################################################################
00058 // ######################################################################
00059 
00060 AttentionGate::
00061 AttentionGate(OptionManager& mgr,
00062               const std::string& descrName,
00063               const std::string& tagName,
00064               const nub::soft_ref<VisualCortex> vcx) :
00065   SimModule(mgr, descrName, tagName),
00066   itsSaveResults(&OPT_AGsaveResults, this),
00067   itsVCX(vcx), itsLogSigO(0.10f), itsLogSigS(20.0f) // see Neuro/NeuroOpts.{H,C}
00068 { }
00069 
00070 // ######################################################################
00071 AttentionGate::~AttentionGate()
00072 { }
00073 
00074 // ######################################################################
00075 // ######################################################################
00076 // ########## AttentionGateConfigurator implementation
00077 // ######################################################################
00078 // ######################################################################
00079 AttentionGateConfigurator::
00080 AttentionGateConfigurator(OptionManager& mgr,
00081                           const std::string& descrName,
00082                           const std::string& tagName) :
00083   ModelComponent(mgr, descrName, tagName),
00084   itsAGtype(&OPT_AttentionGateType, this),
00085   itsAG(new AttentionGateStd(mgr))
00086 {
00087   addSubComponent(itsAG);
00088 }
00089 
00090 // ######################################################################
00091 AttentionGateConfigurator::~AttentionGateConfigurator()
00092 {  }
00093 
00094 // ######################################################################
00095 nub::ref<AttentionGate>
00096 AttentionGateConfigurator::getAG() const
00097 { return itsAG; }
00098 
00099 // ######################################################################
00100 void AttentionGateConfigurator::
00101 paramChanged(ModelParamBase* const param,
00102              const bool valueChanged,
00103              ParamClient::ChangeStatus* status)
00104 {
00105   ModelComponent::paramChanged(param, valueChanged, status);
00106 
00107   // was that a change of our baby's name?
00108   if (param == &itsAGtype) {
00109     // if we had one, let's unregister it (when we later reset() the
00110     // nub::ref, the current AttentionGate will unexport its
00111     // command-line options):
00112     removeSubComponent(*itsAG);
00113 
00114     // instantiate a SM of the appropriate type:
00115     if (itsAGtype.getVal().compare("Std") == 0)          // standard
00116       itsAG.reset(new AttentionGateStd(getManager()));
00117     else if (itsAGtype.getVal().compare("None") == 0)    // stub
00118       itsAG.reset(new AttentionGateStub(getManager()));
00119     else
00120       LFATAL("Unknown AG type %s", itsAGtype.getVal().c_str());
00121 
00122     // add our baby as a subcomponent of us so that it will become
00123     // linked to the manager through us (hopefully we are registered
00124     // with the manager), which in turn will allow it to export its
00125     // command-line options and get configured:
00126 
00127     addSubComponent(itsAG);
00128 
00129     // tell the controller to export its options:
00130     itsAG->exportOptions(MC_RECURSE);
00131 
00132     // some info message:
00133     LINFO("Selected AG of type %s", itsAGtype.getVal().c_str());
00134   }
00135 }
00136 
00137 // ######################################################################
00138 // ######################################################################
00139 // ########## AttentionGateStd implementation
00140 // ######################################################################
00141 // ######################################################################
00142 
00143 // ######################################################################
00144 AttentionGateStd::
00145 AttentionGateStd(OptionManager& mgr,
00146                  const std::string& descrName,
00147                  const std::string& tagName) :
00148   AttentionGate(mgr, descrName, tagName),
00149   SIMCALLBACK_INIT(SimEventInputFrame),
00150   SIMCALLBACK_INIT(SimEventAttentionGuidanceMapOutput),
00151   SIMCALLBACK_INIT(SimEventSaveOutput),
00152   itsSegmentDone(false),
00153   itsAGStageOneType(&OPT_AttentionGateStageOneType, this),
00154   itsAGStageTwoType(&OPT_AttentionGateStageTwoType, this),
00155   itsAGStageTwoEpochs(&OPT_AttentionGateStageTwoEpochs, this),
00156   itsMaxStageTwoFrames(10),
00157   itsStageTwoGetFeatures(AG_MAX),
00158   itsT(SimTime::ZERO()), itsTimeStep(SimTime::SECS(0.0001)),
00159   itsC(1.0), itsLeak(5000.0)
00160 { }
00161 
00162 // ######################################################################
00163 AttentionGateStd::~AttentionGateStd()
00164 { }
00165 
00166 // ######################################################################
00167 void AttentionGateStd::
00168 onSimEventSaveOutput(SimEventQueue& q, rutz::shared_ptr<SimEventSaveOutput>& e)
00169 {
00170   //LINFO("Run Attention Gate");
00171   // now post an event with our output:
00172   LINFO("Save Attention Gate");
00173   Image<float> ag  = this->getValue(q);
00174   Image<float> lam = this->getLastAttentionMap();
00175   Image<float> cam = this->getCurrentAttentionMap();
00176 
00177   if (ag.initialized())
00178     {
00179       //LINFO("Posting Attention Gate");
00180       ag = normalizeFloat(ag,FLOAT_NORM_0_255)/255.0F;
00181       ag = logSig(ag,itsLogSigO,itsLogSigS) * 255.0F;
00182 
00183       lam = normalizeFloat(lam,FLOAT_NORM_0_255)/255.0F;
00184       lam = logSig(lam,itsLogSigO,itsLogSigS) * 255.0F;
00185 
00186       cam = normalizeFloat(cam,FLOAT_NORM_0_255)/255.0F;
00187       cam = logSig(cam,itsLogSigO,itsLogSigS) * 255.0F;
00188 
00189       rutz::shared_ptr<SimEventAttentionGateOutput>
00190         ago(new SimEventAttentionGateOutput(this, ag, lam, cam, itsFrameNumber-1));
00191       q.post(ago);
00192 
00193 
00194       if (itsSaveResults.getVal())
00195         {
00196           // get the OFS to save to, assuming sinfo is of type
00197           // SimModuleSaveInfo (will throw a fatal exception otherwise):
00198           nub::ref<FrameOstream> ofs = dynamic_cast<const SimModuleSaveInfo&>(e->sinfo()).ofs;
00199 
00200           Image<float> lout = rescale(lam,itsSizeX,itsSizeY);
00201 
00202           // Save a masked copy of the input frame
00203           if(itsLastFrame.initialized())
00204             {
00205               Image<float> maskImage = normalizeFloat(lout,FLOAT_NORM_0_255)/255.0F;
00206               //maskImage = logSig(maskImage,0.25,10.0);
00207               Image<PixRGB<float> > outImageFloat = itsLastFrame * maskImage;
00208               Image<PixRGB<byte> >  outImage      = outImageFloat;
00209 
00210               ofs->writeRGB(outImage, "AG-LMASK", FrameInfo("Masked Image", SRC_POS));
00211             }
00212 
00213 
00214           if (ag.initialized())
00215             {
00216               const Image<float> out = rescale(ag,itsSizeX,itsSizeY);
00217               ofs->writeFloat(out, FLOAT_NORM_PRESERVE,
00218                               "AG",
00219                               FrameInfo("overall attention gate map", SRC_POS));
00220             }
00221           if(lout.initialized())
00222             {
00223               ofs->writeFloat(lout, FLOAT_NORM_PRESERVE,
00224                               "AG-LAM",
00225                               FrameInfo("last attention gate map", SRC_POS));
00226             }
00227           if(cam.initialized())
00228             {
00229               const Image<float> out = rescale(cam,itsSizeX,itsSizeY);
00230               ofs->writeFloat(out, FLOAT_NORM_PRESERVE,
00231                               "AG-CAM",
00232                               FrameInfo("current attention gate map", SRC_POS));
00233             }
00234           itsLastFrame = itsCurrFrame;
00235         }
00236     }
00237 }
00238 
00239 // ######################################################################
00240 void AttentionGateStd::
00241 onSimEventInputFrame(SimEventQueue& q, rutz::shared_ptr<SimEventInputFrame>& e)
00242 {
00243   // get the actual input image/frame size from the world.
00244   // We will use this to scale output of saved files.
00245   if (itsSaveResults.getVal())
00246     {
00247       itsSizeX       = e->frame().getWidth();
00248       itsSizeY       = e->frame().getHeight();
00249       itsCurrFrame   = e->frame().asRgb();
00250       itsFrameNumber = (unsigned int)e->frameNum();
00251     }
00252 }
00253 
00254 // ######################################################################
00255 void AttentionGateStd::
00256 onSimEventAttentionGuidanceMapOutput(SimEventQueue& q, rutz::shared_ptr<SimEventAttentionGuidanceMapOutput>& e)
00257 {
00258   Image<float> input = e->agm();
00259 
00260   if(!itsStageOneGate.initialized())
00261   {
00262     itsStageOneGate.resize(input.getWidth(),input.getHeight(),0.0F);
00263     itsStageTwoGate.resize(input.getWidth(),input.getHeight(),0.0F);
00264     itsCurrentAttentionMap.resize(input.getWidth(),input.getHeight(),0.0F);
00265     itsLastAttentionMap.resize(input.getWidth(),input.getHeight(),0.0F);
00266   }
00267   itsInput = input;
00268 
00269   if(itsAGStageTwoType.getVal().compare("None") != 0)
00270   {
00271     if(itsSegmentDone == false)
00272     {
00273       itsSegmenter.SIsetValThresh(std::vector<float>(1,256.0F),
00274                                   std::vector<float>(1,32.0F));
00275       itsSegmenter.SItoggleCandidateBandPass(false);
00276       int x = itsInput.getWidth();
00277       int y = itsInput.getHeight();
00278       itsSegmenter.SIsetFrame(&x,&y);
00279       itsSegmenter.SIsetAvg(10);
00280       itsSegmenter.SItoggleRemoveSingles(true);
00281       itsSegmenter.SIsetKillValue(1);
00282       itsSegmentDone = true;
00283     }
00284   }
00285 }
00286 
00287 
00288 // ######################################################################
00289 void AttentionGateStd::reset1()
00290 {
00291   itsStageOneGate.freeMem();
00292   itsStageTwoGate.freeMem();
00293   itsCurrentAttentionMap.freeMem();
00294   itsLastAttentionMap.freeMem();
00295 
00296   itsTotalEpochs = (uint)((itsAGStageTwoEpochs.getVal() * 2) + 1);
00297 }
00298 
00299 // ######################################################################
00300 Image<float> AttentionGateStd::getValue(SimEventQueue& q)
00301 {
00302   // Use the simple or complex stage one gate?
00303   if (itsAGStageOneType.getVal().compare("Simple") == 0)
00304     stageOneGateSimple(q);
00305   else if (itsAGStageOneType.getVal().compare("Complex") == 0)
00306     stageOneGateComplex(q);
00307   else
00308     {
00309       LINFO("Type of stage one attention gate given by");
00310       LFATAL("ag-so-type as '%s' is not valid", itsAGStageOneType.getVal().c_str());
00311     }
00312 
00313   if (itsAGStageTwoType.getVal().compare("Std") == 0)
00314     {
00315       stageTwoGate(q);
00316       return itsStageTwoGate;
00317     }
00318   else if (itsAGStageTwoType.getVal().compare("None") == 0)
00319     return itsStageOneGate;
00320   else
00321     {
00322       LINFO("Type of stage two attention gate given by");
00323       LFATAL("ag-st-type as '%s' is not valid", itsAGStageTwoType.getVal().c_str());
00324     }
00325 
00326   return itsStageOneGate;
00327 }
00328 
00329 // ######################################################################
00330 void AttentionGateStd::stageOneGateSimple(SimEventQueue& q)
00331 {
00332   const SimTime dt = SimTime::computeDeltaT((q.now() - itsT), itsTimeStep);
00333 
00334   //LINFO("Running stage one standard attention gate");
00335 
00336   // >>> Forward map operation (attention blocking)
00337   /* Here we use a leaky integrator map to create a forward mask
00338      which stores the blocking moving forward.
00339   */
00340 
00341   // The last attention map needs to be copied since it is no longer current
00342   itsLastAttentionMap    = itsCurrentAttentionMap;
00343 
00344   // Find what poked through
00345   const Image<float> poke = itsInput - itsStageOneGate;
00346 
00347   Image<float>::const_iterator p = poke.begin();
00348   Image<float>::iterator       a = itsCurrentAttentionMap.beginw();
00349 
00350   while(p != poke.end())
00351   {
00352     if(*p < 0) *a++ = 0;
00353     else       *a++ = *p;
00354     //LINFO("%f",*p);
00355     p++;
00356   }
00357   //LINFO("END");
00358 
00359   // leak the attention gate (yes it's hacky, but it works)
00360   const float delta       = (dt.secs() / itsC);
00361   const Image<float> leak = (itsStageOneGate * itsLeak);
00362   itsStageOneGate        -= leak * delta;
00363 
00364   // Update the attention gate as the max of itsStageOneGate and itsInput
00365   a = itsStageOneGate.beginw();
00366   Image<float>::iterator i = itsInput.beginw();
00367 
00368   // find the max and put in a
00369   while(a != itsStageOneGate.endw())
00370   {
00371     if(*a < *i) *a = *i;
00372     a++; i++;
00373   }
00374 
00375   // >>> Backward map operation (attention capture)
00376   /* Here we take the current attention map and push it backwards in time
00377      to see if we captured attention from the last frame.
00378 
00379      This method states that it is the amount of attention that pops through
00380      the gate which holds the full capture backwards. Thus, in order to capture
00381      backwards I must pop through the attention gate with more power than
00382      the last guy.
00383 
00384   */
00385 
00386   // Difference
00387   const Image<float> diff = itsLastAttentionMap - itsCurrentAttentionMap;
00388 
00389   // Clamp to >= 0
00390   Image<float>::const_iterator d = diff.begin();
00391   a = itsLastAttentionMap.beginw();
00392   while(d != diff.end())
00393   {
00394     if(*d < 0) *a++ = 0;
00395     else       *a++ = *d;
00396     d++;
00397   }
00398 
00399   itsT = q.now();
00400 }
00401 
00402 // ######################################################################
00403 void AttentionGateStd::stageOneGateComplex(SimEventQueue& q)
00404 {
00405   LFATAL("Under Construction");
00406 }
00407 
00408 // ######################################################################
00409 void AttentionGateStd::stageTwoGate(SimEventQueue& q)
00410 {
00411   // Stage Two, Integration
00412   /* This is tricky. In order to compute integration, feature maps must be
00413      stored for several epochs. This way we can backward compere items at
00414      Time (approx) -250 ms to the current frame to see if this frame enhances
00415      the frame that came before. Enhancement is considered if the features
00416      in the current frame have similar statistics such that they should enhance
00417      the other frame.
00418 
00419      Additionally, the first stage must be considered. It will gate what
00420      gets through. As such, only features that get through the first gate
00421      can enhance an image in the second stage.
00422   */
00423 
00424   //LFATAL("Under Construction");
00425 
00426   // Find the discrete attention regions in this image
00427   std::vector<Image<float> > input;
00428   float min,max,avg;
00429   getMinMaxAvg(itsLastAttentionMap,min,max,avg);
00430   Image<float> newImage = ((itsLastAttentionMap - min) / (max - min)) * 255.0f;
00431   input.push_back(newImage);
00432   itsSegmenter.SIsegment(&input,false);
00433   Image<bool> candidates = itsSegmenter.SIreturnCandidates();
00434   itsStageTwoSegments    = itsSegmenter.SIreturnBlobs();
00435   int         segnum     = itsSegmenter.SInumberBlobs();
00436 
00437   LINFO("Compute Min Max XY");
00438   computeMinMaxXY(itsLastAttentionMap,itsStageTwoSegments,candidates);
00439 
00440   LINFO("Extract Features");
00441   extractFeatureValues(q);
00442 
00443   LINFO("Compute Feature Distances");
00444   computeFeatureDistance();
00445 
00446   rutz::shared_ptr<SimEventAttentionGateStageTwoSegments>
00447     segs(new SimEventAttentionGateStageTwoSegments(this, candidates,
00448                                                    itsStageTwoObjects.back(),
00449                                                    segnum));
00450 
00451   q.post(segs);
00452 }
00453 
00454 // ######################################################################
00455 void AttentionGateStd::computeMinMaxXY(const Image<float>& attentionMap,
00456                                        const Image<int>&   segments,
00457                                        const Image<bool>&  candidates)
00458 {
00459   Image<float>::const_iterator attentionMapItr = attentionMap.begin();
00460   Image<int>::const_iterator   segmentsItr     = segments.begin();
00461   Image<bool>::const_iterator  candidatesItr   = candidates.begin();
00462 
00463   int maxObjects = 0;
00464 
00465   // How many potential objects do we have?
00466   while(candidatesItr != candidates.end())
00467   {
00468     if(*candidatesItr++)
00469     {
00470       if(*segmentsItr > maxObjects)
00471       {
00472         maxObjects = *segmentsItr;
00473       }
00474     }
00475     ++segmentsItr;
00476   }
00477 
00478   segmentsItr     = segments.begin();
00479   candidatesItr   = candidates.begin();
00480 
00481   itsStageTwoObjectX.resize(maxObjects+1,-1);
00482   itsStageTwoObjectY.resize(maxObjects+1,-1);
00483   itsStageTwoObjectVal.resize(maxObjects+1,0);
00484   itsStageTwoObjectID.resize(maxObjects+1,0);
00485 
00486   int       pos = 0;
00487   const int w   = candidates.getWidth();
00488 
00489   // For each segmented object, find its max value and location
00490   // according to the value of surprise.
00491 
00492   while(candidatesItr != candidates.end())
00493   {
00494     if(*candidatesItr++)
00495     {
00496       if(*attentionMapItr > itsStageTwoObjectVal[*segmentsItr])
00497       {
00498         itsStageTwoObjectVal[*segmentsItr] = *attentionMapItr;
00499         itsStageTwoObjectX[*segmentsItr]   = pos%w;
00500         itsStageTwoObjectY[*segmentsItr]   = pos/w;
00501         itsStageTwoObjectID[*segmentsItr]  = *segmentsItr;
00502       }
00503     }
00504     pos++; ++attentionMapItr; ++segmentsItr;
00505   }
00506 }
00507 
00508 // ######################################################################
00509 void AttentionGateStd::extractFeatureValues(SimEventQueue& q)
00510 {
00511   std::vector<int>::iterator stageTwoObjectXItr   = itsStageTwoObjectX.begin();
00512   std::vector<int>::iterator stageTwoObjectYItr   = itsStageTwoObjectY.begin();
00513   std::vector<int>::iterator stageTwoObjectIDItr  = itsStageTwoObjectID.begin();
00514   std::vector<float>::iterator stageTwoObjectValItr = itsStageTwoObjectVal.begin();
00515 
00516   const float h = (float)itsLastAttentionMap.getHeight();
00517   const float w = (float)itsLastAttentionMap.getWidth();
00518 
00519   std::vector<std::vector<float> > featureObjects;
00520   std::vector<int>                 featureX;
00521   std::vector<int>                 featureY;
00522   std::vector<int>                 featureID;
00523   std::vector<float>               featureVal;
00524 
00525   rutz::shared_ptr<SimReqVCXmaps> vcxm(new SimReqVCXmaps(this));
00526   q.request(vcxm); // VisualCortex is now filling-in the maps...
00527   rutz::shared_ptr<ChannelMaps> chm = vcxm->channelmaps();
00528 
00529   const uint numSubmaps = chm->numSubmaps();
00530 
00531   int n = 0;
00532 
00533   while(stageTwoObjectYItr != itsStageTwoObjectY.end())
00534   {
00535     const float i         = (float)*stageTwoObjectXItr++;
00536     const float j         = (float)*stageTwoObjectYItr++;
00537     const float val       = (float)*stageTwoObjectValItr++;
00538     const int   ID        =        *stageTwoObjectIDItr++;
00539 
00540     std::vector<float> features;
00541 
00542     // check to make sure we took in a value
00543     if(i >= 0.0f)
00544     {
00545       // Get the feature from the most surprising location. If a feature
00546       // map is larger, take the feature at the center of the overlap
00547       if(itsStageTwoGetFeatures == AG_CENTER)
00548       {
00549         //LINFO("Using %f , %f",i,j);
00550         for (uint k = 0; k < numSubmaps; k++)
00551         {
00552           const Image<float> submap     = chm->getRawCSmap(k);
00553           const float        sm_w       = (float)submap.getWidth();
00554           const float        sm_h       = (float)submap.getHeight();
00555           // Adjust location for different sized maps
00556           const int          sm_i       = (int)floor(i   * (sm_w/w) +
00557                                                      0.5 * (sm_w/w));
00558           const int          sm_j       = (int)floor(j   * (sm_h/h) +
00559                                                      0.5 * (sm_h/h));
00560           //LINFO("Getting w %f h %f - %d , %d",sm_w,sm_h,sm_i,sm_j);
00561           const float        featureVal = submap.getVal(sm_i,sm_j);
00562           features.push_back(featureVal);
00563         }
00564       }
00565       // Take the max feature from the location if a feature map is larger
00566       // than the surprise map
00567       else if(itsStageTwoGetFeatures == AG_MAX)
00568       {
00569         //LINFO("Using %f , %f",i,j);
00570         for (uint k = 0; k < numSubmaps; k++)
00571         {
00572           const Image<float> submap     = chm->getRawCSmap(k);
00573           const float        sm_w       = (float)submap.getWidth();
00574           const float        sm_h       = (float)submap.getHeight();
00575 
00576           // Are the feature submap and AG map the same size?
00577           if(sm_w == w)
00578           {
00579             const float featureVal = submap.getVal((int)i,(int)j);
00580             features.push_back(featureVal);
00581           }
00582           // is the feature submap larger?
00583           else if(sm_w > w)
00584           {
00585             // Compute the bounds high/low of i and j
00586             const int l_i = (int)floor(i *  (sm_w/w));
00587             const int h_i = l_i + (int)round(sm_w/w);
00588 
00589             const int l_j = (int)floor(j *  (sm_h/h));
00590             const int h_j = l_j + (int)round(sm_h/h);
00591             // get the max feature from within the bounds
00592             float maxVal = 0;
00593 
00594             for(int u = l_i; u < h_i; u++)
00595             {
00596               for(int v = l_j; v < h_j; v++)
00597               {
00598                 const float featureVal = submap.getVal(u,v);
00599                 if(featureVal > maxVal)
00600                   maxVal = featureVal;
00601                 //LINFO("Getting u %d v %d - %f , %f - Val %f",
00602                 //      u,v,i,j,featureVal);
00603               }
00604             }
00605             features.push_back(maxVal);
00606           }
00607           // is the feature submap smaller?
00608           else
00609           {
00610             const int sm_i = (int)floor(i   * (sm_w/w) +
00611                                         0.5 * (sm_w/w));
00612             const int sm_j = (int)floor(j   * (sm_h/h) +
00613                                         0.5 * (sm_h/h));
00614             const float        featureVal = submap.getVal(sm_i,sm_j);
00615             features.push_back(featureVal);
00616           }
00617         }
00618       }
00619       else
00620       {
00621         LFATAL("Unknown method given for stage two feature extraction");
00622       }
00623       // push back details of this object
00624       featureObjects.push_back(features);
00625       featureX.push_back((int)i);
00626       featureY.push_back((int)j);
00627       featureID.push_back(ID);
00628       featureVal.push_back(val);
00629       n++;
00630     }
00631   }
00632 
00633   // Create the container and store this frames stats in it
00634   SimEventAttentionGateStageTwoObjects stObjects;
00635   stObjects.features = featureObjects;       // features of objects
00636   stObjects.segments = itsStageTwoSegments;  // Segment image of objects
00637   stObjects.x        = featureX;             // X position of objects
00638   stObjects.y        = featureY;             // Y position of objects
00639   stObjects.id       = featureID;            // ID of objects
00640   stObjects.val      = featureVal;           // Surprise Value of Objects
00641   stObjects.n        = n;                    // Number of Objects
00642 
00643   // store the object features from this frame
00644   itsStageTwoObjects.push_back(stObjects);
00645 
00646   // trim to keep bounded in size (smaller than n frames)
00647   if(itsStageTwoObjects.size() > itsMaxStageTwoFrames)
00648     itsStageTwoObjects.pop_front();
00649 
00650 }
00651 
00652 // ######################################################################
00653 void AttentionGateStd::computeFeatureDistance()
00654 {
00655   // NOTE: this does not take into account whether objects overlap
00656   // that comes later.
00657 
00658   // figure out how many objects we are dealing with
00659   int otherObjects = 0;
00660 
00661   // make sure we have more than one frame of samples
00662   if(itsStageTwoObjects.size() > 1)
00663   {
00664 
00665     for(std::deque<SimEventAttentionGateStageTwoObjects>::iterator
00666           stageTwoObjectsItr = itsStageTwoObjects.begin();
00667         stageTwoObjectsItr != (itsStageTwoObjects.end() - 2);
00668         ++stageTwoObjectsItr)
00669     {
00670       otherObjects += stageTwoObjectsItr->n;
00671     }
00672 
00673     // create a matrix to hold the feature distances between objects
00674     Image<float> fdMatrix;
00675     const int thisObjects = (itsStageTwoObjects.back()).n;
00676     fdMatrix.resize(otherObjects,thisObjects);
00677     Image<float>::iterator fdMatrixItr = fdMatrix.beginw();
00678 
00679     std::vector<std::vector<float> >::iterator featuresA =
00680       (itsStageTwoObjects.back()).features.begin();
00681 
00682     while(featuresA != (itsStageTwoObjects.back()).features.end())
00683     {
00684       std::deque<SimEventAttentionGateStageTwoObjects>::iterator
00685         stageTwoObjectsBItr = itsStageTwoObjects.begin();
00686       //LINFO("THIS NEW OBJECT");
00687       //int n = 0;
00688       // Don't include our own objects
00689       while(stageTwoObjectsBItr != (itsStageTwoObjects.end() - 2))
00690       {
00691         std::vector<std::vector<float> >::iterator featuresB =
00692           stageTwoObjectsBItr->features.begin();
00693         //LINFO("THIS NEW SET");
00694 
00695         while(featuresB != stageTwoObjectsBItr->features.end())
00696         {
00697           // compute features distance between objects
00698           std::vector<float>::iterator fa = featuresA->begin();
00699           std::vector<float>::iterator fb = featuresB->begin();
00700           float ss = 0.0f;
00701           // take the euclidian sum of square distance
00702           while(fa != featuresA->end())
00703           {
00704             ss += pow(*fa++ - *fb++ ,2);
00705           }
00706           // normalize the distance since we can have different
00707           // number of features
00708           *fdMatrixItr++ = sqrt(ss/featuresA->size());
00709           //LINFO("Mat %d : %f",n++,*(fdMatrixItr - 1));
00710           ++featuresB;
00711         }
00712         ++stageTwoObjectsBItr;
00713       }
00714       ++featuresA;
00715     }
00716 
00717     // store the distance matrix at the end
00718     (itsStageTwoObjects.end() - 1)->fdistance = fdMatrix;
00719   }
00720 }
00721 
00722 
00723 // ######################################################################
00724 Image<float> AttentionGateStd::getLastAttentionMap() const
00725 {
00726   return itsLastAttentionMap;
00727 }
00728 
00729 // ######################################################################
00730 Image<float> AttentionGateStd::getCurrentAttentionMap() const
00731 {
00732   return itsCurrentAttentionMap;
00733 }
00734 // ######################################################################
00735 // ######################################################################
00736 // ########## AttentionGateStub implementation
00737 // ######################################################################
00738 // ######################################################################
00739 
00740 // ######################################################################
00741 AttentionGateStub::
00742 AttentionGateStub(OptionManager& mgr,
00743                         const std::string& descrName,
00744                         const std::string& tagName) :
00745   AttentionGate(mgr, descrName, tagName)
00746 { }
00747 
00748 // ######################################################################
00749 AttentionGateStub::~AttentionGateStub()
00750 { }
00751 
00752 // ######################################################################
00753 /* So things look consistent in everyone's emacs... */
00754 /* Local Variables: */
00755 /* indent-tabs-mode: nil */
00756 /* End: */
Generated on Sun May 8 08:41:02 2011 for iLab Neuromorphic Vision Toolkit by  doxygen 1.6.3