SaliencyMap.H

Go to the documentation of this file.
00001 /*!@file Neuro/SaliencyMap.H Class declarations for saliency map class */
00002 
00003 // //////////////////////////////////////////////////////////////////// //
00004 // The iLab Neuromorphic Vision C++ Toolkit - Copyright (C) 2001 by the //
00005 // University of Southern California (USC) and the iLab at USC.         //
00006 // See http://iLab.usc.edu for information about this project.          //
00007 // //////////////////////////////////////////////////////////////////// //
00008 // Major portions of the iLab Neuromorphic Vision Toolkit are protected //
00009 // under the U.S. patent ``Computation of Intrinsic Perceptual Saliency //
00010 // in Visual Environments, and Applications'' by Christof Koch and      //
00011 // Laurent Itti, California Institute of Technology, 2001 (patent       //
00012 // pending; application number 09/912,225 filed July 23, 2001; see      //
00013 // http://pair.uspto.gov/cgi-bin/final/home.pl for current status).     //
00014 // //////////////////////////////////////////////////////////////////// //
00015 // This file is part of the iLab Neuromorphic Vision C++ Toolkit.       //
00016 //                                                                      //
00017 // The iLab Neuromorphic Vision C++ Toolkit is free software; you can   //
00018 // redistribute it and/or modify it under the terms of the GNU General  //
00019 // Public License as published by the Free Software Foundation; either  //
00020 // version 2 of the License, or (at your option) any later version.     //
00021 //                                                                      //
00022 // The iLab Neuromorphic Vision C++ Toolkit is distributed in the hope  //
00023 // that it will be useful, but WITHOUT ANY WARRANTY; without even the   //
00024 // implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR      //
00025 // PURPOSE.  See the GNU General Public License for more details.       //
00026 //                                                                      //
00027 // You should have received a copy of the GNU General Public License    //
00028 // along with the iLab Neuromorphic Vision C++ Toolkit; if not, write   //
00029 // to the Free Software Foundation, Inc., 59 Temple Place, Suite 330,   //
00030 // Boston, MA 02111-1307 USA.                                           //
00031 // //////////////////////////////////////////////////////////////////// //
00032 //
00033 // Primary maintainer for this file: Laurent Itti <itti@usc.edu>
00034 // $HeadURL: svn://isvn.usc.edu/software/invt/trunk/saliency/src/Neuro/SaliencyMap.H $
00035 // $Id: SaliencyMap.H 11113 2009-04-14 07:23:37Z itti $
00036 //
00037 
00038 #ifndef SALIENCYMAP_H_DEFINED
00039 #define SALIENCYMAP_H_DEFINED
00040 
00041 #include "Component/ModelComponent.H"
00042 #include "Component/ModelParam.H"
00043 #include "Image/Image.H"
00044 #include "Image/LevelSpec.H"
00045 #include "Neuro/IORtypes.H"
00046 #include "Neuro/LeakyIntegrator.H"
00047 #include "Neuro/NeuroSimEvents.H"
00048 #include "Neuro/SpatialMetrics.H"
00049 #include "Simulation/SimModule.H"
00050 #include "Simulation/SimEvents.H"
00051 #include "Util/SimTime.H"
00052 
00053 class FrameOstream;
00054 class ModelManager;
00055 class SpatialMetrics;
00056 class WTAwinner;
00057 
00058 // ######################################################################
00059 //! The saliency map base class
00060 // ######################################################################
00061 /*! This is a 2D salience map. It is just a base class with virtual
00062   function definitions. Various saliency maps are available below,
00063   which provide implementations for these virtual functions. The
00064   saliency map receives input through the input() function, and its
00065   current state (membrane potential of neurons) can be retrieved using
00066   getV(). Various inplementations will typically derive from class
00067   Image and inherit all the standard methods of class Image. */
00068 class SaliencyMap : public SimModule
00069 {
00070 public:
00071   // ######################################################################
00072   //! @name Constructor, destructor, and reset
00073   //@{
00074 
00075   //! Ininitialized constructor
00076   SaliencyMap(OptionManager& mgr,
00077               const std::string& descrName = "Saliency Map",
00078               const std::string& tagName = "SaliencyMap");
00079 
00080   //! Destructor
00081   virtual ~SaliencyMap();
00082 
00083   //@}
00084 
00085 private:
00086   // forbid assignment and copy-construction:
00087   SaliencyMap& operator=(const SaliencyMap& sm);
00088   SaliencyMap(const SaliencyMap& sm);
00089 };
00090 
00091 // ######################################################################
00092 //! A do-nothing stub implementation of SaliencyMap
00093 // ######################################################################
00094 class SaliencyMapStub : public SaliencyMap
00095 {
00096 public:
00097   //! Constructor
00098   SaliencyMapStub(OptionManager& mgr,
00099                   const std::string& descrName = "Saliency Map Stub",
00100                   const std::string& tagName = "SaliencyMapStub");
00101 
00102   //! Destructor
00103   virtual ~SaliencyMapStub();
00104 };
00105 
00106 // ######################################################################
00107 //! A partial implementation of SaliencyMap for further subclasses
00108 // ######################################################################
00109 class SaliencyMapAdapter : public SaliencyMap
00110 {
00111 public:
00112   //! Constructor
00113   SaliencyMapAdapter(OptionManager& mgr,
00114                      const std::string& descrName,
00115                      const std::string& tagName);
00116 
00117   //! Destructor
00118   virtual ~SaliencyMapAdapter();
00119 
00120 protected:
00121   //! Callback for when a new WTA winner is available
00122   SIMCALLBACK_DECLARE(SaliencyMapAdapter, SimEventWTAwinner);
00123 
00124   //! Callback for when a new data from VisualCortex is available
00125   SIMCALLBACK_DECLARE(SaliencyMapAdapter, SimEventVisualCortexOutput);
00126 
00127   //! Callback for when a new eye activity is going on
00128   SIMCALLBACK_DECLARE(SaliencyMapAdapter, SimEventSaccadeStatusEye);
00129 
00130   //! Callback for every time we should save our outputs
00131   SIMCALLBACK_DECLARE(SaliencyMapAdapter, SimEventSaveOutput);
00132 
00133   //! metrics that depend on the input size:
00134   nub::ref<SpatialMetrics> itsMetrics;
00135 
00136   //! type of IOR to use. See IORtypes.H
00137   OModelParam<IORtype> itsIORtype;
00138 
00139   //! Specification of our image processing center-surround levels
00140   /*! The only thing that we care about here is the saliency map level */
00141   OModelParam<LevelSpec> itsLevelSpec;
00142 
00143   //! Save our internals?
00144   OModelParam<bool> itsSaveResults;
00145 
00146   //! Save our cumulative internals when saveResults() is called?
00147   OModelParam<bool> itsSaveCumResults;
00148 
00149   //! use saccadic suppression?
00150   OModelParam<bool> itsUseSaccadicSuppression;
00151 
00152   //! use blink suppression?
00153   OModelParam<bool> itsUseBlinkSuppression;
00154 
00155   /*! If the saliency map voltage at winning location gets higher than
00156     this (in mV), trigger some global inhibition */
00157   OModelParam<float> itsMaxWinMv;
00158 
00159   //! Cumulative map so far. Cumulates each time saveResults() is called
00160   /*! This is computed only if itsSaveCumResults() is true */
00161   Image<float> itsCumMap;
00162 
00163   //! Set new input currents for all neurons
00164   /*! This should initialize and resize the saliency map if the
00165     saliency map is currently uninitialized (e.g., just after
00166     construction or reset()). */
00167   virtual void input(SimEventQueue& q, const Image<float>& in) = 0;
00168 
00169   //! Difference-of-Gaussians inhibition of return
00170   /*! The positive Gaussian is defined by its amplitute pampl and
00171     width psdev; the negative Gaussian by mampl and msdev.  Both
00172     centered at winner.  */
00173   virtual void depress(SimEventQueue& q, const Point2D<int>& winner,
00174                        const double& pampl, const double& mampl,
00175                        const double& psdev, const double& msdev) = 0;
00176 
00177   //! Object-based inhibition of return
00178   /*! The object mask defines where in the image the inhibition will
00179     be applied. The winner coordinates and ampl are used to calibrate
00180     the inhibition strength */
00181   virtual void depress(SimEventQueue& q, const Point2D<int>& winner, const double& ampl,
00182                        const Image<byte>& objectMask) = 0;
00183 
00184   //! Turn saccadic suppression on/off
00185   virtual void saccadicSuppression(SimEventQueue& q, const bool on) = 0;
00186 
00187   //! Turn blink suppression on/off
00188   virtual void blinkSuppression(SimEventQueue& q, const bool on) = 0;
00189 
00190   //! Return all our membrane potential voltages as an Image<float>
00191   virtual Image<float> getV() const = 0;
00192 
00193   //! Access function using Point2D<int>
00194   virtual float getV(const Point2D<int>& p) const = 0;
00195 };
00196 
00197 // ######################################################################
00198 //! The standard saliency map: a 2D array of LeakyIntegrator neurons
00199 // ######################################################################
00200 /*! This is a 2D salience map. It is an Image<LeakyIntegrator> and
00201   inherits all the standard methods of class Image. To avoid
00202   confusion, we here add explicit input() and getV() methods (rather
00203   than providing conversion functions between LeakyIntegrator and
00204   float, which could make the process more transparent but also
00205   possibly more confusing). */
00206 class SaliencyMapStd : public SaliencyMapAdapter
00207 {
00208 public:
00209   //! Ininitialized constructor
00210   SaliencyMapStd(OptionManager& mgr,
00211                  const std::string& descrName = "Saliency Map Std",
00212                  const std::string& tagName = "SaliencyMapStd");
00213 
00214   //! Destructor
00215   virtual ~SaliencyMapStd();
00216 
00217 protected:
00218   //! Callback for every clock tick, to run our diff equations in integrate()
00219   SIMCALLBACK_DECLARE(SaliencyMapStd, SimEventClockTick);
00220 
00221   OModelParam<float> itsGinhDecay; //!< decay for IOR inhibition
00222 
00223   //! Set new input currents for all neurons
00224   virtual void input(SimEventQueue& q, const Image<float>& in);
00225 
00226   //! Difference-of-Gaussians inhibition of return
00227   virtual void depress(SimEventQueue& q, const Point2D<int>& winner,
00228                        const double& pampl, const double& mampl,
00229                        const double& psdev, const double& msdev);
00230 
00231   //! Object-based inhibition of return
00232   virtual void depress(SimEventQueue& q, const Point2D<int>& winner, const double& ampl,
00233                        const Image<byte>& objectMask);
00234 
00235   //! Turn saccadic suppression on/off
00236   virtual void saccadicSuppression(SimEventQueue& q, const bool on);
00237 
00238   //! Turn blink suppression on/off
00239   virtual void blinkSuppression(SimEventQueue& q, const bool on);
00240 
00241   //! Return all our membrane potential voltages as an Image<float>
00242   virtual Image<float> getV() const;
00243 
00244   //! Access function using Point2D<int>
00245   virtual float getV(const Point2D<int>& p) const;
00246 
00247   //! Reset to initial state just after construction
00248   virtual void reset1();
00249 
00250 private:
00251   Image<LeakyIntegrator> itsNeurons;
00252 };
00253 
00254 // ######################################################################
00255 //! The trivial saliency map: a 2D array of floats
00256 // ######################################################################
00257 /*! This is a 2D salience map. It is an Image<float> and inherits all
00258   the standard methods of class Image. To avoid confusion, we here add
00259   explicit input() and getV() methods. */
00260 class SaliencyMapTrivial : public SaliencyMapAdapter
00261 {
00262 public:
00263   //! Ininitialized constructor
00264   /*! The SM will be resized and initialized the first time input() is
00265     called */
00266   SaliencyMapTrivial(OptionManager& mgr,
00267                      const std::string& descrName = "Saliency Map Trivial",
00268                      const std::string& tagName = "SaliencyMapTrivial");
00269 
00270   //! Destructor
00271   virtual ~SaliencyMapTrivial();
00272 
00273 protected:
00274   //! Coeff to go from current inputs to voltage outputs
00275   OModelParam<float> itsItoVcoeff;
00276 
00277   //! Set new input currents for all neurons
00278   virtual void input(SimEventQueue& q, const Image<float>& in);
00279 
00280   //! Difference-of-Gaussians inhibition of return
00281   virtual void depress(SimEventQueue& q, const Point2D<int>& winner,
00282                        const double& pampl, const double& mampl,
00283                        const double& psdev, const double& msdev);
00284 
00285   //! Object-based inhibition of return
00286   virtual void depress(SimEventQueue& q, const Point2D<int>& winner, const double& ampl,
00287                        const Image<byte>& objectMask);
00288 
00289   //! Turn saccadic suppression on/off
00290   virtual void saccadicSuppression(SimEventQueue& q, const bool on);
00291 
00292   //! Turn blink suppression on/off
00293   virtual void blinkSuppression(SimEventQueue& q, const bool on);
00294 
00295   //! Return all our membrane potential voltages as an Image<float>
00296   virtual Image<float> getV() const;
00297 
00298   //! Access function using Point2D<int>
00299   virtual float getV(const Point2D<int>& p) const;
00300 
00301   //! Reset to initial state just after construction
00302   virtual void reset1();
00303 
00304 private:
00305   Image<float> itsNeurons;
00306 };
00307 
00308 // ######################################################################
00309 //! The fast saliency map: a 2D array of floats
00310 // ######################################################################
00311 /*! This is a 2D salience map. It is an Image<float> and inherits all
00312   the standard methods of class Image. To avoid confusion, we here add
00313   explicit input() and getV() methods. */
00314 class SaliencyMapFast : public SaliencyMapAdapter
00315 {
00316 public:
00317   //! Ininitialized constructor
00318   SaliencyMapFast(OptionManager& mgr,
00319                   const std::string& descrName = "Saliency Map Fast",
00320                   const std::string& tagName = "SaliencyMapFast");
00321 
00322   //! Destructor
00323   virtual ~SaliencyMapFast();
00324 
00325 protected:
00326   //! Simulation time step, in seconds
00327   OModelParam<SimTime> itsTimeStep;
00328 
00329   //! Coeff by which new inputs replace the current SM at each time step (0..1)
00330   OModelParam<float> itsInputCoeff;
00331 
00332   //! Coeff to go from current inputs to voltage outputs
00333   OModelParam<float> itsItoVcoeff;
00334 
00335   //! Set new input currents for all neurons
00336   virtual void input(SimEventQueue& q, const Image<float>& in);
00337 
00338   //! Difference-of-Gaussians inhibition of return
00339   virtual void depress(SimEventQueue& q, const Point2D<int>& winner,
00340                        const double& pampl, const double& mampl,
00341                        const double& psdev, const double& msdev);
00342 
00343   //! Object-based inhibition of return
00344   virtual void depress(SimEventQueue& q, const Point2D<int>& winner, const double& ampl,
00345                        const Image<byte>& objectMask);
00346 
00347   //! Integrate our neurons for one time step
00348   virtual void integrate(SimEventQueue& q);
00349 
00350   //! Turn saccadic suppression on/off
00351   virtual void saccadicSuppression(SimEventQueue& q, const bool on);
00352 
00353   //! Turn blink suppression on/off
00354   virtual void blinkSuppression(SimEventQueue& q, const bool on);
00355 
00356   //! Return all our membrane potential voltages as an Image<float>
00357   virtual Image<float> getV() const;
00358 
00359   //! Access function using Point2D<int>
00360   virtual float getV(const Point2D<int>& p) const;
00361 
00362   //! Reset to initial state just after construction
00363   virtual void reset1();
00364 
00365 private:
00366   Image<float> itsNeurons;
00367   Image<float> itsInputCopy;  // copy of inputs
00368   SimTime itsT;               // keep track of time
00369 };
00370 
00371 #endif
00372 
00373 // ######################################################################
00374 /* So things look consistent in everyone's emacs... */
00375 /* Local Variables: */
00376 /* indent-tabs-mode: nil */
00377 /* End: */
Generated on Sun May 8 08:41:03 2011 for iLab Neuromorphic Vision Toolkit by  doxygen 1.6.3