fzvision.C

Go to the documentation of this file.
00001 /*!@file VFAT/fzvision.C  simplified version of vision.C with feature analysis
00002  */
00003 
00004 // //////////////////////////////////////////////////////////////////// //
00005 // The iLab Neuromorphic Vision C++ Toolkit - Copyright (C) 2001 by the //
00006 // University of Southern California (USC) and the iLab at USC.         //
00007 // See http://iLab.usc.edu for information about this project.          //
00008 // //////////////////////////////////////////////////////////////////// //
00009 // Major portions of the iLab Neuromorphic Vision Toolkit are protected //
00010 // under the U.S. patent ``Computation of Intrinsic Perceptual Saliency //
00011 // in Visual Environments, and Applications'' by Christof Koch and      //
00012 // Laurent Itti, California Institute of Technology, 2001 (patent       //
00013 // pending; application number 09/912,225 filed July 23, 2001; see      //
00014 // http://pair.uspto.gov/cgi-bin/final/home.pl for current status).     //
00015 // //////////////////////////////////////////////////////////////////// //
00016 // This file is part of the iLab Neuromorphic Vision C++ Toolkit.       //
00017 //                                                                      //
00018 // The iLab Neuromorphic Vision C++ Toolkit is free software; you can   //
00019 // redistribute it and/or modify it under the terms of the GNU General  //
00020 // Public License as published by the Free Software Foundation; either  //
00021 // version 2 of the License, or (at your option) any later version.     //
00022 //                                                                      //
00023 // The iLab Neuromorphic Vision C++ Toolkit is distributed in the hope  //
00024 // that it will be useful, but WITHOUT ANY WARRANTY; without even the   //
00025 // implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR      //
00026 // PURPOSE.  See the GNU General Public License for more details.       //
00027 //                                                                      //
00028 // You should have received a copy of the GNU General Public License    //
00029 // along with the iLab Neuromorphic Vision C++ Toolkit; if not, write   //
00030 // to the Free Software Foundation, Inc., 59 Temple Place, Suite 330,   //
00031 // Boston, MA 02111-1307 USA.                                           //
00032 // //////////////////////////////////////////////////////////////////// //
00033 //
00034 // Primary maintainer for this file: T. Nathan Mundhenk <mundhenk@usc.edu>
00035 // $HeadURL: svn://isvn.usc.edu/software/invt/trunk/saliency/src/VFAT/fzvision.C $
00036 // $Id: fzvision.C 14376 2011-01-11 02:44:34Z pez $
00037 //
00038 // ############################################################
00039 // ############################################################
00040 // ##### --- VFAT ---
00041 // ##### Vision Feature Analysis Tool:
00042 // ##### T. Nathan Mundhenk nathan@mundhenk.com
00043 // ##### Laurent Itti itti@pollux.usc.edu
00044 // #####
00045 // ############################################################
00046 // ############################################################
00047 
00048 //#include "saliency.H"
00049 #include "Component/ModelManager.H"
00050 #include "Media/FrameSeries.H"
00051 #include "GUI/XWindow.H"
00052 #include "Media/MediaSimEvents.H"
00053 #include "Neuro/StdBrain.H"
00054 #include "Neuro/NeuroSimEvents.H"
00055 #include "VFAT/featureClusterVision.H"
00056 #include "VFAT/segmentImageTrackMC.H"
00057 #include "Simulation/SimEventQueueConfigurator.H"
00058 
00059 // define standard deviation multiplier for simple tracker
00060 #define H1_STD 3.5F
00061 #define H2_STD 3.5F
00062 #define S_STD  3.0F
00063 #define V_STD  2.5F
00064 
00065 // DV Size
00066 
00067 #define IMAGE_SIZE_X 640
00068 #define IMAGE_SIZE_Y 480
00069 #define TRACKER_NUMBER 3
00070 
00071 
00072 // Small NTSC Size
00073 
00074 //#define IMAGE_SIZE_X 320
00075 //#define IMAGE_SIZE_Y 240
00076 
00077 //! Basic entry and test binary to featureClusterVision
00078 
00079 int main(const int argc, const char **argv)
00080 {
00081   MYLOGVERB = LOG_INFO;  // suppress debug messages
00082 
00083   // Instantiate a ModelManager:
00084   ModelManager manager("Attention Model");
00085 
00086   // Instantiate our various ModelComponents:
00087   nub::soft_ref<SimEventQueueConfigurator>
00088     seqc(new SimEventQueueConfigurator(manager));
00089   manager.addSubComponent(seqc);
00090 
00091   nub::soft_ref<InputFrameSeries> ifs(new InputFrameSeries(manager));
00092   manager.addSubComponent(ifs);
00093 
00094   nub::soft_ref<OutputFrameSeries> ofs(new OutputFrameSeries(manager));
00095   manager.addSubComponent(ofs);
00096 
00097   nub::soft_ref<StdBrain> brain(new StdBrain(manager));
00098   manager.addSubComponent(brain);
00099 
00100   // feature analysis part of model
00101   const std::string name = "featureCluster";
00102   const std::string tag = "fCV";
00103   Image< PixRGB<byte> > input;
00104   Image< PixRGB<float> > finput;
00105   std::vector<covHolder<double> > covHolder;
00106 
00107   // Parse command-line:
00108   if (manager.parseCommandLine(argc, argv, "<image>", 1, 1) == false)
00109     return(1);
00110 
00111   nub::soft_ref<featureClusterVision<float> >
00112     fCV(new featureClusterVision<float>(manager,name,tag,brain,ifs,
00113                                         manager.getExtraArg(0)));
00114   manager.addSubComponent(fCV);
00115   nub::soft_ref<SimEventQueue> seq = seqc->getQ();
00116 
00117   // let's get all our ModelComponent instances started:
00118   manager.start();
00119   bool init = true;
00120   // main loop:
00121 
00122   //XWindow win1(Dims(IMAGE_SIZE_X, IMAGE_SIZE_Y), 0, 0, "CLASSES");
00123   Image<PixRGB<float> > fima1; Image<PixRGB<byte> > bima1;
00124   XWindow win2(Dims(IMAGE_SIZE_X, IMAGE_SIZE_Y), 0, 0, "CLASSES TEMPORAL");
00125   Image<PixRGB<float> > fima2; Image<PixRGB<byte> > bima2;
00126   XWindow win3(Dims(IMAGE_SIZE_X, IMAGE_SIZE_Y), 0, 0, "TARGETS TEMPORAL");
00127   Image<PixRGB<float> > fima3; Image<PixRGB<byte> > bima3;
00128   Image<float> fima4;
00129 
00130   //************************************************************
00131   // SIMPLE TRACKER STUFF
00132 
00133   XWindow wini(Dims(IMAGE_SIZE_X, IMAGE_SIZE_Y),     0, 0, "Test-input window");
00134   XWindow wino(Dims(IMAGE_SIZE_X/4, (IMAGE_SIZE_Y/4)*TRACKER_NUMBER), 0, 0, "Test-output window");
00135   XWindow winAux(Dims(500, 450),   0, 0, "Channel levels");
00136   int wi = IMAGE_SIZE_X/4;
00137   int hi = IMAGE_SIZE_Y/4;
00138   //! Holds H2SV representation of image for simple tracker
00139   Image<PixH2SV2<float> > H2SVimage;
00140   //! output display image
00141   Image< PixRGB<byte> > display;
00142   //! Holds color to track for simple tracker
00143   std::vector<float> color(4,0.0F);
00144   //! +/- tollerance value on mean for track
00145   std::vector<float> std(4,0.0F);
00146   //! normalizer over color values (highest value possible)
00147   std::vector<float> norm(4,0.0F);
00148   norm[0] = 1.0F; norm[1] = 1.0F; norm[2] = 1.0F; norm[3] = 1.0F;
00149   //! how many standard deviations out to adapt, higher means less bias
00150   std::vector<float> adapt(4,0.0F);
00151   adapt[0] = 3.5F; adapt[1] = 3.5F; adapt[2] = 3.5F; adapt[3] = 3.5F;
00152   //! highest value for color adaptation possible (hard boundry)
00153   std::vector<float> upperBound(4,0.0F);
00154   //! lowest value for color adaptation possible (hard boundry)
00155   std::vector<float> lowerBound(4,0.0F);
00156 
00157   segmentImageTrackMC<float,unsigned int,4> _segmenter(wi*hi);
00158 
00159   std::vector<segmentImageTrackMC<float,unsigned int,4> >
00160     segmenters(TRACKER_NUMBER,_segmenter);
00161 
00162   for(int i = 0; i < TRACKER_NUMBER; i++)
00163   {
00164     segmenters[i].SITsetFrame(&wi,&hi);
00165     segmenters[i].SITsetCircleColor(0,255,0);
00166     segmenters[i].SITsetUseSmoothing(true,10);
00167   }
00168 
00169   segmenters[0].SITsetBoxColor(128,0,0     ,255,0,0);
00170   segmenters[1].SITsetBoxColor(0,128,0     ,0,255,0);
00171   segmenters[2].SITsetBoxColor(0,0,128     ,0,0,255);
00172   segmenters[3].SITsetBoxColor(128,128,0   ,255,255,0);
00173   segmenters[4].SITsetBoxColor(0,128,128   ,0,255,255);
00174   segmenters[5].SITsetBoxColor(128,0,128   ,255,0,255);
00175 
00176   std::vector<bool> noTargetYet(TRACKER_NUMBER,true);
00177   std::vector<unsigned int> contTrackTime(TRACKER_NUMBER,0);
00178 
00179   //************************************************************
00180   std::ofstream outfileStart1("tracker.fzvision.log",std::ios::out);
00181   outfileStart1 << "\n*************************************************\n\n";
00182   outfileStart1.close();
00183   std::ofstream outfileStart2("blobs.fzvision.log",std::ios::out);
00184   outfileStart2 << "\n*************************************************\n\n";
00185   outfileStart2.close();
00186   while(1) {
00187     // write outputs or quit?
00188     bool shouldsave = false;
00189     bool shouldquit = false;
00190     bool gotcovert = false;
00191     if (seq->check<SimEventWTAwinner>(0)) gotcovert = true;
00192     const FrameState os = ofs->update(seq->now(), gotcovert);
00193 
00194     if (os == FRAME_NEXT || os == FRAME_FINAL)
00195       shouldsave = true;
00196 
00197     if (os == FRAME_FINAL)
00198       shouldquit = true;
00199 
00200     if (shouldsave)
00201     {
00202       SimModuleSaveInfo sinfo(ofs, *seq);
00203       brain->save(sinfo);
00204       int foo = ifs->frame();
00205       std::string Myname;
00206       std::string a = manager.getExtraArg(0);
00207       std::string b = ".";
00208       char c[100];
00209       if(foo == 1)
00210         init = false;
00211       if(foo < 10)
00212         sprintf(c,"00000%d",foo);
00213       else if(foo < 100)
00214         sprintf(c,"0000%d",foo);
00215       else if(foo < 1000)
00216         sprintf(c,"000%d",foo);
00217       else if(foo < 10000)
00218         sprintf(c,"00%d",foo);
00219       else if(foo < 100000)
00220         sprintf(c,"0%d",foo);
00221       else
00222         sprintf(c,"%d",foo);
00223       Myname = a + b + c;
00224       std::cerr << "******************************************************\n";
00225       std::cerr << "******************************************************\n";
00226       // NOTE: added '0' at the end here because there was no value
00227       // matching the final '%d'
00228       LINFO("RUNNING FRAME %d NTARG %d",foo,0);
00229       LINFO("NAME %s",Myname.c_str());
00230       // Upload a frame to the classifier
00231       //Raster::VisuRGB(input,"input.ppm");
00232       fCV->fCVuploadImage(input,Myname);
00233       // classify and cluster this image
00234       fCV->fCVclusterImage();
00235       std::cerr << "******************************************************\n";
00236       std::cerr << "******************************************************\n";
00237       // get back image data
00238       fCV->fCVgetClusterImages(&fima1,&fima2,&fima3,&fima4);
00239       //Raster::VisuRGB(finput,"finput.ppm");
00240       bima1 = fima1; bima2 = fima2; bima3 = fima3;
00241       //win1.drawImage(bima1);
00242       win2.drawImage(bima2);
00243       win3.drawImage(bima3);
00244 
00245       //Raster::WriteRGB(bima1,sformat("features.out.%s.ppm",c));
00246       Raster::WriteRGB(bima2,sformat("classes.out.%s.ppm",c));
00247       //Raster::WriteRGB(bima3,sformat("targets.out.%s.ppm",c));
00248       // optional output of bayesian classification
00249       //fCV->fCVprintOutBayesClass();
00250       // optional output of nearest neighbor classification
00251       //fCV->fCVprintOutNeighborClass();
00252 
00253       //std::string outFile = manager.getExtraArg(0) + c;
00254 
00255       //fCV->fCVfeaturesToFile(outFile,true);
00256       // optional dump out all features post ICA to file
00257       //fCV->fCVICAfeaturesToFile(outFile);
00258       // optional check all the combined Motions
00259       //fCV->fCVcheckMotionCombined(foo);
00260 
00261       //std::string file = "covMatrix";
00262       // optional A file contaning signature data
00263       //fCV->fCVdumpCovMatrix(file);
00264       //fCV->fCVprintOutClusters();
00265 
00266       // optional SIGNATURE DATA FROM THIS CLASS (see covHolder.H)
00267       covHolder = fCV->fCVgetCovHolders();
00268       // optional Size of the covHolder Vector
00269 
00270       // See covHolder.H to see how data is stored
00271       // See covEstimate.C matchPmeanAccum to see how these
00272       // numbers are computed.
00273       std::ofstream outfile("tracker.fzvision.log",std::ios::app);
00274       outfile << ">>> FRAME " << foo;
00275       for(int i = 0; i < TRACKER_NUMBER; i++)
00276       {
00277         segmenters[i].SITsetFrameNumber(foo);
00278       }
00279 
00280       for(int x = 0; x < (signed)fCV->fCVgetCovHolderSize(); x++)
00281       {
00282         covHolder[x].dumpMeToFile(a,c,init);
00283         for(int i = 0; i < TRACKER_NUMBER; i++)
00284         {
00285           if(noTargetYet[i] == true)
00286           {
00287             LINFO("%d,%f",x,covHolder[x].mean[3]);
00288             if(covHolder[x].mean[3] > 1.5F)
00289             {
00290               bool unique = true;
00291               for(int j = 0; j < TRACKER_NUMBER; j++)
00292               {
00293                 if(noTargetYet[j] == false)
00294                 {
00295                   unsigned int umaxX,umaxY,uminX,uminY,uposX,uposY;
00296                   int maxX,maxY,minX,minY;
00297                   bool isSet = false;
00298                   outfile << "\t\n- CHECKED " << i << " WITH " << j << " : ";
00299                   if(contTrackTime[j] > 1)
00300                   {
00301                     segmenters[j].SITgetMinMaxBoundry(&uminX,&umaxX,&uminY,&umaxY);
00302                     uposX = 0; uposY = 0;
00303                     outfile << "REAL BOUNDARY ";
00304                     uminX = uminX/4; uminY = uminY/4;
00305                     umaxX = umaxX/4; umaxY = umaxY/4;
00306                   }
00307                   else
00308                   {
00309                     segmenters[j].SITgetExpectedTargetPosition(&uposX,&uposY,&umaxX,&umaxY,&uminX,&uminY,&isSet);
00310                     // NOTE: I changed these from posX,posY to
00311                     // uposX,uposY, because posX,posY haven't been
00312                     // initialized yet at this point and were
00313                     // generating compiler warnings:
00314                     outfile << "EXPECTED BOUNDARY (" << uposX << "," << uposY << ") : ";
00315                   }
00316 
00317                   const int fudge = 15; // get ride of this
00318                   minX = (signed)uminX; minY = (signed)uminY;
00319                   maxX = (signed)umaxX; maxY = (signed)umaxY;
00320                   bool Xok = false;
00321                   bool Yok = false;
00322                   if((((signed)covHolder[x].minX/4 < minX-fudge) && ((signed)covHolder[x].maxX/4 < minX-fudge)) ||
00323                      (((signed)covHolder[x].minX/4 > maxX+fudge) && ((signed)covHolder[x].maxX/4 > maxX+fudge)))
00324                   {
00325                     Xok = true;
00326                   }
00327                   if((((signed)covHolder[x].minY/4 < minY-fudge) && ((signed)covHolder[x].maxY/4 < minY-fudge)) ||
00328                      (((signed)covHolder[x].minY/4 > maxY+fudge) && ((signed)covHolder[x].maxY/4 > maxY+fudge)))
00329                   {
00330                     Yok = true;
00331                   }
00332                   if((Xok == false) && (Yok == false))
00333                   {
00334                     unique = false;
00335                   }
00336 
00337                   outfile << covHolder[x].minX/4 << " < " << minX-fudge << " && "
00338                           << covHolder[x].maxX/4 << " < " << minX-fudge << " || "
00339                           << covHolder[x].minX/4 << " > " << maxX+fudge << " && "
00340                           << covHolder[x].maxX/4 << " > " << maxX+fudge << " \n\tAND\n\t"
00341                           << covHolder[x].minY/4 << " < " << minY-fudge << " && "
00342                           << covHolder[x].maxY/4 << " < " << minY-fudge << " || "
00343                           << covHolder[x].minY/4 << " > " << maxY+fudge << " && "
00344                           << covHolder[x].maxY/4 << " > " << maxY+fudge << " : isSet = " << isSet
00345                           << " : Unique = " << unique << "\n";
00346                 }
00347               }
00348               if(unique == true)
00349               {
00350                 PixRGB<float>   pRGB;
00351                 PixH2SV2<float> pH2SV2;
00352                 pH2SV2.p[0] = covHolder[x].mean[6]/covHolder[x].bias[6];
00353                 pH2SV2.p[1] = covHolder[x].mean[7]/covHolder[x].bias[7];
00354                 pH2SV2.p[2] = covHolder[x].mean[4]/covHolder[x].bias[4];
00355                 pH2SV2.p[3] = covHolder[x].mean[5]/covHolder[x].bias[5];
00356                 pRGB = PixRGB<float>(pH2SV2);
00357                 outfile << "\n\t- "            << x
00358                         << " Moving Target " << covHolder[x].mean[3] << "\t"
00359                         << covHolder[x].featureName[3].c_str() << "\t"
00360                         << covHolder[x].mean[3]                << "\t"
00361                         << covHolder[x].STD[3]                 << "\t"
00362                         << covHolder[x].bias[3]                << "\t"
00363                         << covHolder[x].featureName[4].c_str() << "\t"
00364                         << covHolder[x].mean[4]                << "\t"
00365                         << covHolder[x].STD[4]                 << "\t"
00366                         << covHolder[x].bias[4]                << "\t"
00367                         << covHolder[x].featureName[5].c_str() << "\t"
00368                         << covHolder[x].mean[5]                << "\t"
00369                         << covHolder[x].STD[5]                 << "\t"
00370                         << covHolder[x].bias[5]                << "\t"
00371                         << covHolder[x].featureName[6].c_str() << "\t"
00372                         << covHolder[x].mean[6]                << "\t"
00373                         << covHolder[x].STD[6]                 << "\t"
00374                         << covHolder[x].bias[6]                << "\t"
00375                         << covHolder[x].featureName[7].c_str() << "\t"
00376                         << covHolder[x].mean[7]                << "\t"
00377                         << covHolder[x].STD[7]                 << "\t"
00378                         << covHolder[x].bias[6]                << "\n\t- "
00379                         << "RED "   << pRGB.p[0]               << "\t"
00380                         << "GREEN " << pRGB.p[1]               << "\t"
00381                         << "BLUE "  << pRGB.p[2]               << "\n";
00382                 LINFO("%s",covHolder[x].featureName[3].c_str());
00383                 LINFO("%s",covHolder[x].featureName[6].c_str());
00384                 LINFO("%s",covHolder[x].featureName[7].c_str());
00385                 LINFO("%s",covHolder[x].featureName[4].c_str());
00386                 LINFO("%s",covHolder[x].featureName[5].c_str());
00387                 LINFO("..%lx",covHolder[x].samples);
00388                 outfile << "\t- Samples " << covHolder[x].samples << " ... ";
00389                 if(covHolder[x].samples > 25)
00390                 {
00391                   outfile << "OK ";
00392                   outfile << " Variance " << covHolder[x].STD[6]  * H1_STD
00393                           << " "          << covHolder[x].STD[7]  * H2_STD
00394                           << " ... ";
00395                   /* if((((covHolder[x].STD[6]  * H1_STD) < 0.15F) ||
00396                      ((covHolder[x].STD[7]  * H2_STD) < 0.15F) ||
00397                      ((covHolder[x].STD[4]  * S_STD) < 0.15F)) &&
00398                      ((covHolder[x].STD[5]  * V_STD) > 0.15F))
00399                      {*/
00400 
00401                   outfile << "OK\n";
00402                   //if(covHolder[x].lifeSpan > 5)
00403                   //{
00404 
00405                   outfile << "<<<NEW TRACKING>>> " << x            << "\t"
00406                           << "FRAME " << foo                       << "\t"
00407                           << "TRACKER " << i                       << "\t"
00408                           << "LIFE SPAN " << covHolder[x].lifeSpan << "\t"
00409                           << "("     << covHolder[x].posX/4
00410                           << ","     << covHolder[x].posY/4        << ")\t"
00411                           << "Max (" << covHolder[x].maxX/4
00412                           << ","     << covHolder[x].maxY/4        << ")\t"
00413                           << "Min (" << covHolder[x].minX/4
00414                           << ","     << covHolder[x].minY/4        << ")\n";
00415 
00416                   LINFO("....%lx",covHolder[x].lifeSpan);
00417 
00418                   noTargetYet[i]   = false;
00419 
00420                   color[0]      = covHolder[x].mean[6]/covHolder[x].bias[6];
00421                   color[1]      = covHolder[x].mean[7]/covHolder[x].bias[7];
00422                   color[2]      = covHolder[x].mean[4]/covHolder[x].bias[4];
00423                   color[3]      = covHolder[x].mean[5]/covHolder[x].bias[5];
00424 
00425                   std[0]        = (covHolder[x].STD[6]*(1/covHolder[x].bias[6]))
00426                     * H1_STD;
00427                   std[1]        = (covHolder[x].STD[7]*(1/covHolder[x].bias[7]))
00428                     * H2_STD;
00429                   std[2]        = (covHolder[x].STD[4]*(1/covHolder[x].bias[4]))
00430                     * S_STD;
00431                   std[3]        = (covHolder[x].STD[5]*(1/covHolder[x].bias[5]))
00432                     * V_STD;
00433 
00434                   upperBound[0] = covHolder[x].mean[6]/covHolder[x].bias[6]
00435                     + 0.45F;
00436                   upperBound[1] = covHolder[x].mean[7]/covHolder[x].bias[7]
00437                     + 0.45F;
00438                   upperBound[2] = covHolder[x].mean[4]/covHolder[x].bias[4]
00439                     + 0.45F;
00440                   upperBound[3] = covHolder[x].mean[5]/covHolder[x].bias[5]
00441                     + 0.45F;
00442 
00443                   lowerBound[0] = covHolder[x].mean[6]/covHolder[x].bias[6]
00444                     - 0.45F;
00445                   lowerBound[1] = covHolder[x].mean[7]/covHolder[x].bias[7]
00446                     - 0.45F;
00447                   lowerBound[2] = covHolder[x].mean[4]/covHolder[x].bias[4]
00448                     - 0.45F;
00449                   lowerBound[3] = covHolder[x].mean[5]/covHolder[x].bias[5]
00450                     - 0.45F;
00451 
00452                   // reset the frame to the center
00453                   segmenters[i].SITsetFrame(&wi,&hi);
00454                   // where should the target appear?
00455                   segmenters[i].SITsetExpectedTargetPosition(covHolder[x].posX/4,
00456                                                              covHolder[x].posY/4,
00457                                                              covHolder[x].maxX/4,
00458                                                              covHolder[x].maxY/4,
00459                                                              covHolder[x].minX/4,
00460                                                              covHolder[x].minY/4);
00461                   // What colors should the target have?
00462 
00463                   segmenters[i].SITsetTrackColor(&color,&std,&norm,&adapt,
00464                                                  &upperBound,&lowerBound,false,true);
00465                   //}
00466                 }
00467               }
00468             }
00469           }
00470         }
00471       }
00472       outfile << "\n";
00473       outfile.close();
00474       display = input;
00475       Image<PixRGB<byte> > Aux;
00476       Aux.resize(100,450,true);
00477       Image<byte> tempPaste;
00478       tempPaste.resize(IMAGE_SIZE_X/4, (IMAGE_SIZE_Y/4)*TRACKER_NUMBER,true);
00479       for(int i = 0; i < TRACKER_NUMBER; i++)
00480       {
00481         Image<byte> temp;
00482         temp.resize(IMAGE_SIZE_X/4, IMAGE_SIZE_Y/4,true);
00483         if(noTargetYet[i] == false)
00484         {
00485           H2SVimage = input;
00486           segmenters[i].SITtrackImageAny(H2SVimage,&display,&Aux,true);
00487           /* Retrieve and Draw all our output images */
00488           temp = segmenters[i].SITreturnCandidateImage();
00489 
00490 
00491           char foofoo[100];
00492           sprintf(foofoo,"blobs.%d.fzvision.log",i);
00493 
00494           std::ofstream outfile2(foofoo,std::ios::app);
00495           outfile2 << "FRAME "      << foo                                  << "\t"
00496                    << "TRACK TIME " << contTrackTime[i]                     << "\t"
00497                    << "BLOBS "      << segmenters[i].SITnumberBlobs()       << "\t"
00498                    << "LOT status " << segmenters[i].SITreturnLOTtypeName() << "\t"
00499                    << "LOT count "  << segmenters[i].SITgetLOTcount()       << "\t"
00500                    << "MASS "       << segmenters[i].SITgetMass()           << "\n";
00501           for(unsigned int ii = 0; ii < segmenters[i].SITnumberBlobs(); ii++)
00502           {
00503             outfile2 << "\tBLOB NUMBER " << ii                << "\t"
00504                      << segmenters[i].SITgetBlobReasonForKill(ii) << " ... \t"
00505                      << segmenters[i].SITgetBlobMass(ii)          << "\t"
00506                      << segmenters[i].SITgetBlobPosX(ii)          << "\t"
00507                      << segmenters[i].SITgetBlobPosY(ii)          << "\n";
00508           }
00509           outfile2 << "\n";
00510           outfile2.close();
00511 
00512           if(segmenters[i].SIT_LOTandRESET == true)
00513           {
00514             noTargetYet[i]   = true;
00515             contTrackTime[i] = 0;
00516             LINFO("LOSS OF TRACK RESET");
00517             std::ofstream outfile("tracker.fzvision.log",std::ios::app);
00518             outfile << ">>>LOSS OF TRACK " << i
00519                     << " RESET AT FRAME "  << foo << "\n";
00520             outfile.close();
00521           }
00522           else
00523           {
00524             contTrackTime[i]++;
00525           }
00526         }
00527         pasteImage(tempPaste,temp,(byte)128,Point2D<int>(0,(IMAGE_SIZE_Y/4)*i));
00528       }
00529       Raster::WriteGray(tempPaste,sformat("tracker.candidates.out.%s.pgm",c));
00530       wino.drawImage(tempPaste);
00531       Raster::WriteRGB(Aux,sformat("tracker.levels.out.%s.ppm",c));
00532       winAux.drawImage(Aux);
00533       Raster::WriteRGB(display,sformat("tracker.out.%s.ppm",c));
00534       wini.drawImage(display);
00535     }
00536 
00537     if (shouldquit) break;              // done
00538 
00539     // why do we handle the output before the input? That's because
00540     // both the input and output frame series will switch to the next
00541     // frame at the exact same time, if input and output framerates
00542     // are equal. When the input series switches to a new frame, it
00543     // will reset any drawings that were obtained on the previous
00544     // frame. So we need to make sure we have saved those results
00545     // before we read the new frame in.
00546 
00547     // if we displayed a bunch of images, let's pause:
00548     if (ifs->shouldWait() || ofs->shouldWait())
00549       Raster::waitForKey();
00550 
00551     // read new image in?
00552     const FrameState is = ifs->update(seq->now());
00553     if (is == FRAME_COMPLETE) break; // done
00554     if (is == FRAME_NEXT || is == FRAME_FINAL) // new frame
00555     {
00556       input = ifs->readRGB();
00557 
00558       // empty image signifies end-of-stream
00559       if (input.initialized())
00560         {
00561            rutz::shared_ptr<SimEventInputFrame>
00562             e(new SimEventInputFrame(brain.get(), GenericFrame(input), 0));
00563           seq->post(e); // post the image to the brain
00564 
00565           // show memory usage if in debug mode:
00566           if (MYLOGVERB >= LOG_DEBUG)
00567             SHOWMEMORY("MEMORY USAGE: frame %d t=%.1fms", ifs->frame(),
00568                        seq->now().msecs());
00569         }
00570     }
00571 
00572     // evolve brain:
00573      const SimStatus status = seq->evolve();
00574 
00575     if (SIM_BREAK == status) // Brain decided it's time to quit
00576       break;
00577   }
00578 
00579 
00580   //fCV->checkMixing();
00581   //fCV->checkICA();
00582   //std::string fileName = "features.txt";
00583   fCV->fCVfeaturesToFile(manager.getExtraArg(0),false);
00584   fCV->fCVICAfeaturesToFile(manager.getExtraArg(0));
00585   // stop all our ModelComponents
00586 
00587   manager.stop();
00588 
00589   // all done!
00590   return 0;
00591 }
00592 
00593 // ######################################################################
00594 /* So things look consistent in everyone's emacs... */
00595 /* Local Variables: */
00596 /* indent-tabs-mode: nil */
00597 /* End: */
Generated on Sun May 8 08:42:34 2011 for iLab Neuromorphic Vision Toolkit by  doxygen 1.6.3