app-build-salObjDB.C

Go to the documentation of this file.
00001 /*! @file Beobot/app-build-salObjDB.C Build a database of salient VisualObject
00002     from a stream input */
00003 // //////////////////////////////////////////////////////////////////// //
00004 // The iLab Neuromorphic Vision C++ Toolkit - Copyright (C) 2000-2005   //
00005 // by the University of Southern California (USC) and the iLab at USC.  //
00006 // See http://iLab.usc.edu for information about this project.          //
00007 // //////////////////////////////////////////////////////////////////// //
00008 // Major portions of the iLab Neuromorphic Vision Toolkit are protected //
00009 // under the U.S. patent ``Computation of Intrinsic Perceptual Saliency //
00010 // in Visual Environments, and Applications'' by Christof Koch and      //
00011 // Laurent Itti, California Institute of Technology, 2001 (patent       //
00012 // pending; application number 09/912,225 filed July 23, 2001; see      //
00013 // http://pair.uspto.gov/cgi-bin/final/home.pl for current status).     //
00014 // //////////////////////////////////////////////////////////////////// //
00015 // This file is part of the iLab Neuromorphic Vision C++ Toolkit.       //
00016 //                                                                      //
00017 // The iLab Neuromorphic Vision C++ Toolkit is free software; you can   //
00018 // redistribute it and/or modify it under the terms of the GNU General  //
00019 // Public License as published by the Free Software Foundation; either  //
00020 // version 2 of the License, or (at your option) any later version.     //
00021 //                                                                      //
00022 // The iLab Neuromorphic Vision C++ Toolkit is distributed in the hope  //
00023 // that it will be useful, but WITHOUT ANY WARRANTY; without even the   //
00024 // implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR      //
00025 // PURPOSE.  See the GNU General Public License for more details.       //
00026 //                                                                      //
00027 // You should have received a copy of the GNU General Public License    //
00028 // along with the iLab Neuromorphic Vision C++ Toolkit; if not, write   //
00029 // to the Free Software Foundation, Inc., 59 Temple Place, Suite 330,   //
00030 // Boston, MA 02111-1307 USA.                                           //
00031 // //////////////////////////////////////////////////////////////////// //
00032 //
00033 // Primary maintainer for this file: Christian Siagian <siagian@usc.edu>
00034 // $HeadURL: svn://isvn.usc.edu/software/invt/trunk/saliency/src/Beobot/app-build-salObjDB.C $
00035 // $Id: app-build-salObjDB.C 13712 2010-07-28 21:00:40Z itti $
00036 //
00037 
00038 #include "Beobot/Landmark.H"
00039 #include "Channels/ChannelOpts.H"
00040 #include "Component/GlobalOpts.H"
00041 #include "Component/ModelManager.H"
00042 #include "Component/ModelOptionDef.H"
00043 #include "Component/OptionManager.H"
00044 #include "GUI/XWinManaged.H"
00045 #include "Gist/FFN.H"
00046 #include "Gist/trainUtils.H"
00047 #include "Image/ColorOps.H"
00048 #include "Image/CutPaste.H"
00049 #include "Image/DrawOps.H"
00050 #include "Image/MathOps.H"
00051 #include "Image/Pixels.H"
00052 #include "Image/ShapeOps.H"
00053 #include "Image/Transforms.H"
00054 #include "Media/MPEGStream.H"
00055 #include "Media/MediaOpts.H"
00056 #include "Media/MediaSimEvents.H"
00057 #include "Neuro/GistEstimator.H"
00058 #include "Neuro/InferoTemporal.H"
00059 #include "Neuro/NeuroOpts.H"
00060 #include "Neuro/NeuroSimEvents.H"
00061 #include "Neuro/Retina.H"
00062 #include "Neuro/ShapeEstimator.H"
00063 #include "Neuro/ShapeEstimatorModes.H"
00064 #include "Neuro/SpatialMetrics.H"
00065 #include "Neuro/StdBrain.H"
00066 #include "Neuro/gistParams.H"
00067 #include "Neuro/VisualCortex.H"
00068 #include "Raster/Raster.H"
00069 #include "SIFT/Histogram.H"
00070 #include "SIFT/Keypoint.H"
00071 #include "SIFT/VisualObject.H"
00072 #include "SIFT/VisualObjectDB.H"
00073 #include "Simulation/SimEventQueueConfigurator.H"
00074 #include "Util/Timer.H"
00075 
00076 
00077 #define DB_NAME "out_database"
00078 
00079 #define W_ASPECT_RATIO  320 // ideal minimum width for display
00080 #define H_ASPECT_RATIO  240 // ideal minimum height for display
00081 
00082 FeedForwardNetwork *ffn_place;
00083 double **gistW   = NULL;
00084 
00085 CloseButtonListener wList;
00086 XWinManaged *salWin;
00087 XWinManaged *gistWin;
00088 rutz::shared_ptr<XWinManaged> objWin;
00089 
00090 int wDisp, hDisp, sDisp, scaleDisp;
00091 int wDispWin,  hDispWin;
00092 
00093 // gist display
00094 int pcaW = 16, pcaH = 5;
00095 int winBarW = 5, winBarH = 25;
00096 
00097 // number of landmarks produced
00098 int numObj = 0;
00099 
00100 // clip list
00101 uint nCat = 0;
00102 std::vector<std::string>* clipList;
00103 
00104 // ######################################################################
00105 void                  setupDispWin     (int w, int h);
00106 Image< PixRGB<byte> > getGistDispImg   (Image< PixRGB<byte> > img,
00107                                         Image<float> gistImg,
00108                                         Image<float> gistPcaImg,
00109                                         Image<float> outHistImg);
00110 Image< PixRGB<byte> > getSalDispImg    (Image< PixRGB<byte> > img,
00111                                         Image<float> roiImg,
00112                                         Image< PixRGB<byte> > objImg,
00113                                         Point2D<int> winner, int fNum);
00114 void                  processSalCue    (Image<PixRGB<byte> > inputImg,
00115                                         nub::soft_ref<StdBrain> brain,
00116                                         Point2D<int> winner, int fNum,
00117                                         std::vector< rutz::shared_ptr<Landmark> >&
00118                                         landmarks,
00119                                         const Image<float>& semask, const std::string& selabel);
00120 void                  setupCases       (const char* fname);
00121 // ######################################################################
00122 
00123 // Main function
00124 /*! Load a database, enrich it with new VisualObject entities
00125   extracted from the given images, and save it back. */
00126 int main(const int argc, const char **argv)
00127 {
00128   MYLOGVERB = LOG_INFO;  // suppress debug messages
00129 
00130   // Instantiate a ModelManager:
00131   ModelManager manager("Salient objects DB Builder Model");
00132 
00133   // we cannot use saveResults() on our various ModelComponent objects
00134   // here, so let's not export the related command-line options.
00135   manager.allowOptions(OPTEXP_ALL & (~OPTEXP_SAVE));
00136 
00137   // Instantiate our various ModelComponents:
00138   nub::soft_ref<SimEventQueueConfigurator>
00139     seqc(new SimEventQueueConfigurator(manager));
00140   manager.addSubComponent(seqc);
00141 
00142   nub::soft_ref<InputMPEGStream>
00143     ims(new InputMPEGStream(manager, "Input MPEG Stream", "InputMPEGStream"));
00144   manager.addSubComponent(ims);
00145 
00146   nub::soft_ref<StdBrain> brain(new StdBrain(manager));
00147   manager.addSubComponent(brain);
00148 
00149   nub::ref<SpatialMetrics> metrics(new SpatialMetrics(manager));
00150   manager.addSubComponent(metrics);
00151 
00152   manager.exportOptions(MC_RECURSE);
00153   metrics->setFOAradius(30); // FIXME
00154   metrics->setFoveaRadius(30); // FIXME
00155   manager.setOptionValString(&OPT_MaxNormType, "FancyOne");
00156   manager.setOptionValString(&OPT_UseRandom, "false");
00157 
00158   manager.setOptionValString(&OPT_IORtype, "Disc");
00159   manager.setOptionValString(&OPT_RawVisualCortexChans,"OIC");
00160 
00161   // customize the region considered part of the "object"
00162   //  manager.setOptionValString("ShapeEstimatorMode","SaliencyMap");
00163   //  manager.setOptionValString(&OPT_ShapeEstimatorMode,"ConspicuityMap");
00164   manager.setOptionValString(&OPT_ShapeEstimatorMode, "FeatureMap");
00165   manager.setOptionValString(&OPT_ShapeEstimatorSmoothMethod, "Chamfer");
00166   //manager.setOptionValString(&OPT_ShapeEstimatorSmoothMethod, "Gaussian");
00167 
00168   // set up the GIST ESTIMATOR
00169   //manager.setOptionValString(&OPT_GistEstimatorType,"Std");
00170 
00171   // DO NOT set up the INFEROTEMPORAL
00172   //manager.setOptionValString(&OPT_InferoTemporalType,"Std");
00173   //manager.setOptionValString(&OPT_AttentionObjRecog,"yes");
00174   //manager.setOptionValString(&OPT_MatchObjects,"false");
00175 
00176   // Request a bunch of option aliases (shortcuts to lists of options):
00177   REQUEST_OPTIONALIAS_NEURO(manager);
00178 
00179   // Parse command-line:
00180   if (manager.parseCommandLine(argc, argv, "<input_gistList.txt>",
00181                                1, 1) == false)
00182     return(1);
00183 
00184   nub::soft_ref<SimEventQueue> seq = seqc->getQ();
00185 
00186   // NOTE: this could now be controlled by a command-line option
00187   // --preload-mpeg=true
00188   manager.setOptionValString(&OPT_InputMPEGStreamPreload, "true");
00189 
00190   setupCases(manager.getExtraArg(0).c_str());
00191 
00192   // frame delay in seconds
00193   double rtdelay = 33.3667/1000.0;        // real time
00194   double fdelay  = rtdelay * 3;           // NOTE: 3 times slower than real time
00195 
00196   Image< PixRGB<byte> > inputImg;
00197   Image< PixRGB<byte> > gistDispImg;
00198   int w = 0, h = 0;
00199 
00200   SimTime prevstime = SimTime::ZERO(); uint fNum = 0;
00201   fNum = 0;
00202 
00203   // let's get all our ModelComponent instances started:
00204   manager.start();
00205 
00206   // FIX: WE NEED TO START UTILIZING THIS
00207   // load the database: REPLACE BY LANDMARK for tracking purposes
00208   //  rutz::shared_ptr<VisualObjectDB> vdb(new VisualObjectDB());
00209   //if (vdb->loadFrom(DB_NAME))
00210   //  LINFO("Starting with empty VisualObjectDB.");
00211 
00212   // SIFT visual object related
00213   std::vector< rutz::shared_ptr<Landmark> >** landmarks
00214     = new std::vector< rutz::shared_ptr<Landmark> >*[nCat];
00215 
00216   // for each category in the list
00217   int fTotal = 0;
00218   for(uint i = 0; i < nCat; i++)
00219     {
00220       landmarks[i] = new std::vector< rutz::shared_ptr<Landmark> >
00221         [clipList[i].size()];
00222       // FIX: index is bigger than itsObject.size()
00223       // seems that a value is not reset when we are changing clips
00224 
00225       // for each movie in that category
00226       for(uint j = 0; j < clipList[i].size(); j++)
00227         {
00228           // do post-command-line configs:
00229           ims->setFileName(clipList[i][j]);
00230           LINFO("Loading[%d][%d]: %s",i,j,clipList[i][j].c_str());
00231           Raster::waitForKey();
00232 
00233           if(i ==0 && j == 0)
00234             {
00235               Dims iDims = ims->peekDims();
00236               manager.setOptionValString(&OPT_InputFrameDims,
00237                                          convertToString(ims->peekDims()));
00238               w = iDims.w() - 50 + 1; h = iDims.h();
00239               LINFO("w: %d, h: %d",w, h);
00240 
00241               // setup  display  at the start of stream
00242               // NOTE: wDisp, hDisp, and sDisp are modified here
00243               setupDispWin(w, h);
00244             }
00245 
00246           bool eoClip = false;
00247           fNum = 0;
00248 
00249           // process until end of clip
00250           while(!eoClip)
00251             {
00252               // has the time come for a new frame?
00253               // If we want to SLOW THINGS DOWN change fdelay
00254               if (fNum == 0 ||
00255                   (seq->now() - 0.5 * (prevstime - seq->now())).secs() - fTotal * fdelay > fdelay)
00256                 {
00257                   // load new frame: // FIX THE SECOND CONDITION LATER
00258                   inputImg = ims->readRGB();
00259                   if (inputImg.initialized() == false || (fNum == 5))
00260                     eoClip = true;  // end of input stream
00261                   else
00262                     {
00263                       // take out frame borders NOTE: ONLY FOR SONY CAMCORDER
00264                       inputImg = crop(inputImg, Rectangle::tlbrI(0, 25, h-1, 25 + w - 1));
00265 
00266                       // pass input to brain:
00267                       LINFO("new frame Number: %d",fNum);
00268                       rutz::shared_ptr<SimEventInputFrame>
00269                         e(new SimEventInputFrame(brain.get(), GenericFrame(inputImg), 0));
00270                       seq->post(e); // post the image to the brain
00271 
00272                       // if we are tracking objects
00273                       LINFO("Currently we have: %"ZU" objects in DB[%d][%d]",
00274                             landmarks[i][j].size(),i,j);
00275                       std::string imgName(sformat("image%07d", fNum));
00276 
00277                       // FIX: is this redundant w/ IT
00278                       rutz::shared_ptr<VisualObject>
00279                         newVO(new VisualObject(imgName, "", inputImg));
00280                       for(uint k = 0; k < landmarks[i][j].size(); k++)
00281                         {
00282                           landmarks[i][j][k]->build(newVO, fNum);
00283 
00284                           // print the current location and velocity
00285                           Point2D<int> pos = landmarks[i][j][k]->getPosition();
00286                           //Point2D<int> vel = landmarks[i][j][k]->getVelocity();
00287                           LINFO("landmark[%d][%d][%d]: %s is at %d,%d", i, j, k,
00288                                 landmarks[i][j][k]->getName().c_str(), pos.i, pos.j);
00289                           // FIX NOTE: maybe need to put the position
00290                           // (and thus the motion) in the name (for servoing)
00291                         }
00292 
00293                       // increment frame count
00294                       fNum++;fTotal++;
00295                     }
00296                 }
00297 
00298               // evolve brain:
00299               prevstime = seq->now(); // time before current step
00300               const SimStatus status = seq->evolve();
00301 
00302               // process if SALIENT location is found
00303               if (SeC<SimEventWTAwinner>
00304                   e = seq->check<SimEventWTAwinner>(0))
00305                 {
00306                   // segment out salient location
00307                   // check against the database
00308                   const Point2D<int> winner = e->winner().p;
00309                   //if(landmarks[i][j].size() == 0) // <------CHANGE THIS LATER
00310 
00311                   Image<float> semask; std::string selabel;
00312                   if (SeC<SimEventShapeEstimatorOutput>
00313                       e = seq->check<SimEventShapeEstimatorOutput>(0))
00314                     { semask = e->smoothMask(); selabel = e->winningLabel(); }
00315 
00316                   processSalCue(inputImg, brain, winner, fNum-1, landmarks[i][j], semask, selabel);
00317                 }
00318 
00319               if (SIM_BREAK == status) // Brain decided it's time to quit
00320                 eoClip = true;
00321 
00322             } // END while(!eoClip)
00323 
00324           // display the current resulting database:
00325           LINFO("there are %" ZU " landmarks recovered in DB[%d][%d]",
00326                 landmarks[i][j].size(),i,j);
00327           for(uint k = 0; k < landmarks[i][j].size(); k++)
00328             {
00329               LINFO("  %d: %s", k, landmarks[i][j][k]->getName().c_str());
00330               rutz::shared_ptr<VisualObjectDB> voDB =
00331                 landmarks[i][j][k]->getVisualObjectDB();
00332 
00333               // check the number of evidence for each landmark
00334               for(uint l = 0; l < voDB->numObjects(); l++)
00335                 {
00336                   LINFO("    %d: %s", l, voDB->getObject(l)->getName().c_str());
00337                   Image< PixRGB<byte> > tImg(2*w,2*h,ZEROS);
00338                   inplacePaste(tImg,  voDB->getObject(l)->getImage(), Point2D<int>(0, 0));
00339                   objWin->drawImage(tImg,0,0);
00340                   Raster::waitForKey();
00341                 }
00342             }
00343         }
00344 
00345       // we can now combine the salient objects across lighting condition
00346       // FIX: ADD
00347 
00348       // take out moving things by discarding objects that are only exist in 1 clip.
00349 
00350       // keep objects with a lot of salient hits
00351 
00352       // order object with the starting frame number
00353 
00354       // watch out for overlapping objects
00355     }
00356 
00357   // save the resulting database:
00358   //if(vdb->numObjects() != 0)
00359   //  vdb->saveTo(DB_NAME);
00360 
00361   // stop all our ModelComponents
00362   manager.stop();
00363 
00364   // all done!
00365   return 0;
00366 }
00367 
00368 // ######################################################################
00369 // process salient cues
00370 void processSalCue(const Image<PixRGB<byte> > inputImg,
00371                    nub::soft_ref<StdBrain> brain, Point2D<int> winner, int fNum,
00372                    std::vector< rutz::shared_ptr<Landmark> >& landmarks,
00373                    const Image<float>& semask, const std::string& selabel)
00374 {
00375   const int w = inputImg.getWidth();
00376   const int h = inputImg.getHeight();
00377 
00378   // segment out the object -> maybe port to infero-temporal later
00379   // ----------------------------------------------
00380   Image<float> roiImg;
00381   Image<PixRGB<byte> > objImg; Point2D<int> objOffset;
00382 
00383   bool useSE = true;
00384 
00385   // use Shape estimator to focus on the attended region when available
00386   if (semask.initialized())
00387     {
00388       roiImg = semask * luminance(inputImg);
00389       float mn, mx; getMinMax(semask, mn, mx);
00390       Rectangle r = findBoundingRect(semask, mx*.05f);
00391       objImg = crop(inputImg, r);
00392       objOffset = Point2D<int>(r.left(),r.top());
00393 
00394       // and size is not too big (below 50% input image)
00395       int wSE = objImg.getWidth(), hSE = objImg.getHeight();
00396       if(wSE * hSE > .5 * w * h)
00397         {
00398           LINFO("SE Smooth Mask is too big: %d > %d", wSE*hSE, int(.5*w*h));
00399           useSE = false;
00400         }
00401       else
00402         LINFO("SE Smooth Mask is used %d <= %d", wSE*hSE, int(.5*w*h));
00403     }
00404   else
00405     {
00406       roiImg = luminance(inputImg);
00407       objImg = inputImg;
00408       objOffset = Point2D<int>(0,0);
00409       useSE = false;
00410       LINFO("SE Smooth Mask not yet initialized");
00411     }
00412 
00413   // otherwise use pre-set 100x100window
00414   if(!useSE)
00415     {
00416       Rectangle roi =
00417         Rectangle::tlbrI(winner.j - 50, winner.i - 50,
00418                         winner.j + 50, winner.i + 50);
00419       roi = roi.getOverlap(inputImg.getBounds());
00420 
00421       // keep the roiImg
00422       objImg = crop(inputImg, roi);
00423       objOffset =  Point2D<int>(roi.left(),roi.top());
00424 
00425       LINFO("SE not ready");
00426       Raster::waitForKey();
00427     }
00428 
00429   LINFO("TOP LEFT at: (%d,%d)", objOffset.i, objOffset.j);
00430 
00431   // draw the results
00432   salWin->drawImage(getSalDispImg(inputImg,roiImg,objImg, winner, fNum),0,0);
00433   LINFO("Frame: %d, winner: (%d,%d) in %s", fNum, winner.i, winner.j,
00434         selabel.c_str());
00435   if(fNum > 50)
00436     Raster::waitForKey();
00437 
00438   // need a Visual Cortex to obtain the feature vector
00439   LFATAL("fixme using a SimReq");
00440   ////////nub::soft_ref<VisualCortex> vc = brain->getVC();
00441   std::vector<float> fvec; /////////vc->getFeatures(winner, fvec);
00442 
00443   // create a new VisualObject (a set of SIFT keypoints)
00444   // with the top-left coordinate of the window
00445   rutz::shared_ptr<VisualObject>
00446     obj(new VisualObject("NewObject", "NewObject", objImg,
00447                          winner - objOffset, fvec));
00448 
00449   std::string objName(sformat("obj%07d", numObj));
00450   obj->setName(objName);
00451   obj->setImageFname(objName + ".png");
00452   numObj++;
00453 
00454   // check with the salient regions DB before adding
00455   int trackAccepted = 0;
00456   LINFO("we have: %"ZU" landmarks to match", landmarks.size());
00457   for(uint i = 0; i < landmarks.size(); i++)
00458     {
00459        LINFO("tracking landmark number: %d",i);
00460        rutz::shared_ptr<VisualObjectMatch> cmatch =
00461          landmarks[i]->build(obj, objOffset, fNum);
00462        if(cmatch.is_valid() && cmatch->getScore() > 3.0)
00463          trackAccepted++;
00464     }
00465 
00466   // if it's not used by any of the existing landmarks entry
00467   if(trackAccepted == 0)
00468     {
00469       // create a new one
00470       LINFO("create a new Landmark number %"ZU,landmarks.size());
00471       std::string lmName(sformat("landmark%07"ZU, landmarks.size()));
00472       rutz::shared_ptr<Landmark> newlm(new Landmark(obj, objOffset, fNum, lmName));
00473       newlm->setMatchWin(objWin);
00474       landmarks.push_back(newlm);
00475       if(fNum > 50)
00476         Raster::waitForKey();
00477     }
00478   else if(trackAccepted > 1)
00479     {
00480        LINFO("May have: %d objects jumbled together", trackAccepted);
00481     }
00482 }
00483 
00484 // ######################################################################
00485 // setup display window for visualization purposes
00486 void setupDispWin(int w, int h)
00487 {
00488 
00489   //====================================================================
00490   /*
00491   // figure out the best display w, h, and scale for gist
00492 
00493   // check if both dimensions of the image
00494   // are much smaller than the desired resolution
00495   scaleDisp = 1;
00496   while (w*scaleDisp < W_ASPECT_RATIO*.75 && h*scaleDisp < H_ASPECT_RATIO*.75)
00497     scaleDisp++;
00498 
00499   // check if the height is longer aspect-ratio-wise
00500   // this is because the whole display is setup wrt/ to it
00501   wDisp = w*scaleDisp; hDisp = h*scaleDisp;
00502   if(wDisp/(0.0 + W_ASPECT_RATIO) > hDisp/(0.0 + H_ASPECT_RATIO))
00503     hDisp = (int)(wDisp / (0.0 + W_ASPECT_RATIO) * H_ASPECT_RATIO)+1;
00504   else
00505     wDisp = (int)(hDisp / (0.0 + H_ASPECT_RATIO) * W_ASPECT_RATIO)+1;
00506 
00507   // add slack so that the gist feature entry is square
00508   sDisp = (hDisp/NUM_GIST_FEAT + 1);
00509   hDisp =  sDisp * NUM_GIST_FEAT;
00510 
00511   // add space for all the visuals
00512   wDispWin = wDisp + sDisp * NUM_GIST_COL;
00513   hDispWin = hDisp + sDisp * pcaH * 2;
00514 
00515   gistWin  = new XWinManaged(Dims(wDispWin, hDispWin), 0, 0, "Gist Related");
00516   wList.add(gistWin);
00517   */
00518   //====================================================================
00519 
00520   salWin   = new XWinManaged(Dims(2*w, 2*h), 2*w, 0, "Saliency Related" );
00521   wList.add(salWin);
00522 
00523   objWin.reset(new XWinManaged(Dims(2*w, 2*h), 0, 0, "Object Match" ));
00524   wList.add(*objWin);
00525 
00526 }
00527 
00528 // ######################################################################
00529 // open the *_gistList.txt file containing all the list of .mpg files
00530 void setupCases(const char* fname)
00531 {
00532   char comment[200]; char folder[200];
00533   FILE *fp;  char inLine[100];
00534 
00535   // get the folder, 47 is a slash '/'
00536   const char* tp = strrchr(fname,47);
00537   strncpy(folder,fname,tp-fname+1); folder[tp-fname+1] = '\0';
00538   LINFO("Folder %s -> %s", fname, folder);
00539 
00540   // open a file that lists the sample with ground truth
00541   if((fp = fopen(fname,"rb")) == NULL)
00542     LFATAL("gistList file: %s not found",fname);
00543 
00544   // skip number of samples
00545   if (fgets(inLine, 1000, fp) == NULL) LFATAL("fgets failed");
00546 
00547   // get the number of categories
00548   if (fgets(inLine, 1000, fp) == NULL) LFATAL("fgets failed"); sscanf(inLine, "%d %s", &nCat, comment);
00549   clipList = new std::vector<std::string>[nCat];
00550 
00551   // skip the type of ground truth and column headers
00552   if (fgets(inLine, 1000, fp) == NULL) LFATAL("fgets failed");
00553   if (fgets(inLine, 1000, fp) == NULL) LFATAL("fgets failed");
00554 
00555   char fileName[200];
00556   char cName[100]; char sName[100]; char ext[100];
00557   int cStart, cNum; int gTruth;
00558 
00559   while(fgets(inLine, 1000, fp) != NULL)
00560   {
00561     // get the files in this category and ground truth
00562     sscanf(inLine, "%s %d %d %d %s", cName, &cStart, &cNum,  &gTruth, ext);
00563     char* cname = strrchr(cName,95); // 95 is underscore '_'
00564     strncpy(sName,cName,cname-cName); sName[cname-cName] = '\0';
00565     sprintf(fileName,"%s%s.mpg", folder,sName);
00566     clipList[gTruth].push_back(fileName);
00567     //LINFO("    sName: %s -:- %d", fileName, gTruth);
00568   }
00569 
00570 //   //for display
00571 //   for(uint i = 0; i < nCat; i++)
00572 //     {
00573 //       for(uint j = 0; j < clipList[i].size(); j++)
00574 //         {
00575 //           LINFO("%d %d: %s",i,j,clipList[i][j].c_str());
00576 //         }
00577 //       LINFO(" ");
00578 //     }
00579 
00580   fclose(fp);
00581 }
00582 
00583 // ######################################################################
00584 // get saliency display image for visualization purposes
00585 Image< PixRGB<byte> > getSalDispImg   (Image< PixRGB<byte> > img,
00586                                        Image<float> roiImg,
00587                                        Image< PixRGB<byte> > objImg,
00588                                        Point2D<int> winner,
00589                                        int fNum)
00590 {
00591   int w = img.getWidth(), h = img.getHeight();
00592   Image< PixRGB<byte> > salDispImg(2*w,2*h,ZEROS);
00593 
00594   inplacePaste(salDispImg, img,        Point2D<int>(0, 0));
00595   Image<float> rRoiImg = roiImg;
00596   float min,max;
00597   getMinMax(roiImg,min,max);
00598   drawCircle( roiImg, winner, 10, 0.0f, 1);
00599   drawPoint ( roiImg, winner.i, winner.j, 0.0f);
00600   drawCircle(rRoiImg, winner, 10, 255.0f, 1);
00601   drawPoint (rRoiImg, winner.i, winner.j, 255.0f);
00602   Image< PixRGB<byte> > t = makeRGB(rRoiImg,roiImg,roiImg);
00603   inplacePaste(salDispImg, t,         Point2D<int>(0, h));
00604   inplacePaste(salDispImg, objImg,    Point2D<int>(w, h));
00605 
00606   writeText(salDispImg, Point2D<int>(w,0), sformat("%d",fNum).c_str(),
00607             PixRGB<byte>(0,0,0), PixRGB<byte>(255,255,255));
00608   return salDispImg;
00609 }
00610 
00611 // ######################################################################
00612 // get gist display image for visualization purposes
00613 Image< PixRGB<byte> > getGistDispImg (Image< PixRGB<byte> > img,
00614                                       Image<float> gistImg,
00615                                       Image<float> gistPcaImg,
00616                                       Image<float> outHistImg)
00617 {
00618   Image< PixRGB<byte> > gistDispImg(wDispWin, hDispWin, ZEROS);
00619   int w = img.getWidth(); int h = img.getHeight();
00620 
00621   // grid the displayed input image
00622   drawGrid(img, w/4,h/4,1,1,PixRGB<byte>(255,255,255));
00623   inplacePaste(gistDispImg, img,        Point2D<int>(0, 0));
00624 
00625   // display the gist features
00626   inplaceNormalize(gistImg, 0.0f, 255.0f);
00627   inplacePaste(gistDispImg, Image<PixRGB<byte> >(gistImg),    Point2D<int>(wDisp, 0));
00628 
00629   // display the PCA gist features
00630   inplaceNormalize(gistPcaImg, 0.0f, 255.0f);
00631   inplacePaste(gistDispImg, Image<PixRGB<byte> >(gistPcaImg), Point2D<int>(wDisp, hDisp));
00632 
00633   // display the classifier output histogram
00634   inplaceNormalize(outHistImg, 0.0f, 255.0f);
00635   inplacePaste(gistDispImg, Image<PixRGB<byte> >(outHistImg), Point2D<int>(0, hDisp));
00636 
00637   // draw lines delineating the information
00638   drawLine(gistDispImg, Point2D<int>(0,hDisp),
00639            Point2D<int>(wDispWin,hDisp),
00640            PixRGB<byte>(255,255,255),1);
00641   drawLine(gistDispImg, Point2D<int>(wDisp-1,0),
00642            Point2D<int>(wDisp-1,hDispWin-1),
00643            PixRGB<byte>(255,255,255),1);
00644   return gistDispImg;
00645 }
00646 
00647 // ######################################################################
00648 /* So things look consistent in everyone's emacs... */
00649 /* Local Variables: */
00650 /* indent-tabs-mode: nil */
00651 /* End: */
Generated on Sun May 8 08:40:11 2011 for iLab Neuromorphic Vision Toolkit by  doxygen 1.6.3