SimulationViewerCompress.C

Go to the documentation of this file.
00001 /*!@file Neuro/SimulationViewerCompress.C multi-foveated saliency-based
00002   compression */
00003 
00004 // //////////////////////////////////////////////////////////////////// //
00005 // The iLab Neuromorphic Vision C++ Toolkit - Copyright (C) 2000-2003   //
00006 // by the University of Southern California (USC) and the iLab at USC.  //
00007 // See http://iLab.usc.edu for information about this project.          //
00008 // //////////////////////////////////////////////////////////////////// //
00009 // Major portions of the iLab Neuromorphic Vision Toolkit are protected //
00010 // under the U.S. patent ``Computation of Intrinsic Perceptual Saliency //
00011 // in Visual Environments, and Applications'' by Christof Koch and      //
00012 // Laurent Itti, California Institute of Technology, 2001 (patent       //
00013 // pending; application number 09/912,225 filed July 23, 2001; see      //
00014 // http://pair.uspto.gov/cgi-bin/final/home.pl for current status).     //
00015 // //////////////////////////////////////////////////////////////////// //
00016 // This file is part of the iLab Neuromorphic Vision C++ Toolkit.       //
00017 //                                                                      //
00018 // The iLab Neuromorphic Vision C++ Toolkit is free software; you can   //
00019 // redistribute it and/or modify it under the terms of the GNU General  //
00020 // Public License as published by the Free Software Foundation; either  //
00021 // version 2 of the License, or (at your option) any later version.     //
00022 //                                                                      //
00023 // The iLab Neuromorphic Vision C++ Toolkit is distributed in the hope  //
00024 // that it will be useful, but WITHOUT ANY WARRANTY; without even the   //
00025 // implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR      //
00026 // PURPOSE.  See the GNU General Public License for more details.       //
00027 //                                                                      //
00028 // You should have received a copy of the GNU General Public License    //
00029 // along with the iLab Neuromorphic Vision C++ Toolkit; if not, write   //
00030 // to the Free Software Foundation, Inc., 59 Temple Place, Suite 330,   //
00031 // Boston, MA 02111-1307 USA.                                           //
00032 // //////////////////////////////////////////////////////////////////// //
00033 //
00034 // Primary maintainer for this file: Laurent Itti <itti@usc.edu>
00035 // $HeadURL: svn://isvn.usc.edu/software/invt/trunk/saliency/src/Neuro/SimulationViewerCompress.C $
00036 // $Id: SimulationViewerCompress.C 13343 2010-04-30 22:37:42Z lior $
00037 //
00038 
00039 #include "Neuro/SimulationViewerCompress.H"
00040 
00041 #include "Channels/IntensityChannel.H"
00042 #include "Channels/ChannelOpts.H" // for OPT_LevelSpec
00043 #include "Channels/ChannelMaps.H"
00044 #include "Component/OptionManager.H"
00045 #include "Image/ColorOps.H"   // for toRGB() etc.
00046 #include "Image/CutPaste.H"   // for concatX(), inplacePaste() etc.
00047 #include "Image/DrawOps.H"    // for drawDisk(), drawPatch() etc.
00048 #include "Image/FilterOps.H"  // for lowPass9()
00049 #include "Image/MathOps.H"    // for binaryReverse(), thresholdedMix()
00050 #include "Image/PyramidOps.H" // for buildPyrGaussian(), weightedBlur()
00051 #include "Image/ShapeOps.H"   // for rescale()
00052 #include "Image/Transforms.H" // for chamfer34()
00053 #include "Neuro/AttentionGuidanceMap.H"
00054 #include "Neuro/Brain.H"
00055 #include "Neuro/NeuroOpts.H"
00056 #include "Neuro/Retina.H"
00057 #include "Neuro/SaccadeControllers.H"
00058 #include "Neuro/SaccadeControllerConfigurator.H"
00059 #include "Neuro/SaliencyMap.H"
00060 #include "Neuro/ShapeEstimator.H"
00061 #include "Neuro/SpatialMetrics.H"
00062 #include "Neuro/TaskRelevanceMap.H"
00063 #include "Neuro/VisualCortex.H"
00064 #include "Simulation/SimulationOpts.H"
00065 #include "Transport/FrameInfo.H"
00066 #include "Transport/FrameOstream.H"
00067 #include "Util/MathFunctions.H"
00068 #include "Neuro/NeuroSimEvents.H"
00069 #include "Media/MediaSimEvents.H"
00070 
00071 #include <stdio.h>
00072 // ######################################################################
00073 SimulationViewerCompress::
00074 SimulationViewerCompress(OptionManager& mgr,
00075                          const std::string& descrName,
00076                          const std::string& tagName) :
00077   SimulationViewer(mgr, descrName, tagName),
00078   SIMCALLBACK_INIT(SimEventRetinaImage),
00079   SIMCALLBACK_INIT(SimEventSaccadeStatusEye),
00080   SIMCALLBACK_INIT(SimEventSaveOutput),
00081   itsFOAradius(&OPT_FOAradius, this),
00082   itsNumFoveas(&OPT_SVCOMPnumFoveas, this),
00083   itsSaveTraj(&OPT_SVsaveTraj, this),
00084   itsSaveMegaCombo(&OPT_SVmegaCombo, this),
00085   itsSaveMask(&OPT_SVCOMPsaveMask, this),
00086   itsSaveFoveatedImage(&OPT_SVCOMPsaveFoveatedImage, this),
00087   itsDistanceFactor(&OPT_SVCOMPDistanceFactor, this),
00088   itsSaveEyeCombo(&OPT_SVCOMPsaveEyeCombo, this),
00089   itsDisplayPatch(&OPT_SVdisplayPatch, this),
00090   itsDisplayFOA(&OPT_SVdisplayFOA, this),
00091   itsDisplayEye(&OPT_SVCOMPdisplayHumanEye, this),
00092   itsColorNormal("SVcolorNormal", this, PixRGB<byte>(255, 255, 0)),
00093   itsColorEye("SVcolorHumanEye", this, PixRGB<byte>(128, 255, 255)),
00094   itsHeadRadius(&OPT_HeadMarkerRadius, this),
00095   itsMultiRetinaDepth(&OPT_SVCOMPMultiRetinaDepth, this),
00096   itsCacheSize(&OPT_SVCOMPcacheSize, this),
00097   itsUseTRMmax(&OPT_SVCOMPuseTRMmax, this),
00098   itsFoveaSCtype(&OPT_SVCOMPfoveaSCtype, this),
00099   itsOutFname(&OPT_SVEMoutFname, this),
00100   itsLevelSpec(&OPT_LevelSpec, this),
00101   itsNumRandomSamples(&OPT_SVEMnumRandomSamples, this),
00102   itsEyeCompare(&OPT_SVCOMPeyeCompare, this),
00103   itsIFramePeriod(&OPT_SVCOMPiframePeriod, this),
00104   itsMultiTraj(),
00105   itsSC(), itsInputTime(), itsFrame(-1), itsMask(),
00106   itsIgnoreSC(), itsCurrentMask(), itsOutFile(NULL), itsBlurMask(),
00107   itsEyeData()
00108 {
00109   LINFO("NOTE: disabling IOR");
00110   getManager().setOptionValString(&OPT_IORtype, "None");
00111 
00112   // select an eyetrack EyeHeadController:
00113   if(itsEyeCompare.getVal())
00114     getManager().setOptionValString(&OPT_EyeHeadControllerType, "EyeTrack");
00115 }
00116 
00117 // ######################################################################
00118 SimulationViewerCompress::~SimulationViewerCompress()
00119 { }
00120 
00121 // ######################################################################
00122 void SimulationViewerCompress::paramChanged(ModelParamBase* const param,
00123                                             const bool valueChanged,
00124                                             ParamClient::ChangeStatus* status)
00125 {
00126   SimulationViewer::paramChanged(param, valueChanged, status);
00127   if (valueChanged && (param == &itsNumFoveas || param == &itsFoveaSCtype)) buildSCC();
00128 }
00129 
00130 // ######################################################################
00131 void SimulationViewerCompress::buildSCC()
00132 {
00133   // drop any old SCCs:
00134   removeAllSubComponents();
00135 
00136   LINFO("Using %d SaccadeControllers of type %s", itsNumFoveas.getVal(), itsFoveaSCtype.getVal().c_str());
00137 
00138   // build an array of SCCs and export their options:
00139   for (int i = 0; i < itsNumFoveas.getVal(); i ++)
00140     {
00141       nub::soft_ref<SaccadeControllerEyeConfigurator> scc(new SaccadeControllerEyeConfigurator(getManager()));
00142       // we need to change the tag name so that we won't get confused
00143       // among our various SCCs:
00144       char num[10]; sprintf(num, "%d", i);
00145       scc->setTagName(scc->tagName() + num);
00146       scc->setDescriptiveName(scc->descriptiveName() + " " + std::string(num));
00147       scc->exportOptions(MC_RECURSE);
00148       addSubComponent(scc);
00149 
00150       // let's change its SC type to not what the command-line says,
00151       // but what we say:
00152       scc->setModelParamString("SaccadeControllerEyeType", itsFoveaSCtype.getVal());
00153     }
00154 }
00155 
00156 // ######################################################################
00157 void SimulationViewerCompress::start1()
00158 {
00159   itsSC.clear(); itsEyeData.clear();
00160   itsMask.setMaxSize(itsCacheSize.getVal());
00161 
00162   // setup shortcuts to our configured SCs:
00163   for (uint i = 0; i < numSubComp(); i ++) {
00164     nub::soft_ref<SaccadeControllerEyeConfigurator> scc = dynCast<SaccadeControllerEyeConfigurator>(subComponent(i));
00165     itsSC.push_back(scc->getSC());
00166     itsIgnoreSC.push_back(false);
00167   }
00168 
00169   // open output file if any:
00170   if (itsOutFname.getVal().empty() == false) {
00171     itsOutFile = fopen(itsOutFname.getVal().c_str(), "w");
00172     if (itsOutFile == NULL) PLFATAL("Cannot write '%s'", itsOutFname.getVal().c_str());
00173   }
00174 
00175   SimulationViewer::start1();
00176 }
00177 
00178 // ######################################################################
00179 void SimulationViewerCompress::stop1()
00180 {
00181   if (itsOutFile) { fclose(itsOutFile); itsOutFile = NULL; }
00182 }
00183 
00184 // ######################################################################
00185 void SimulationViewerCompress::
00186 onSimEventRetinaImage(SimEventQueue& q, rutz::shared_ptr<SimEventRetinaImage>& e)
00187 {
00188   itsInputTime = q.now(); // keep track of time of last input
00189   ++ itsFrame; // keep track of frame number, to decide whether I-frame
00190   itsRawInputRectangle = e->rawInputRectangle();
00191 
00192   //  get a foveation pyramid ready:
00193   itsMultiTraj = buildPyrGaussian(e->frame().colorByte(), 0, itsMultiRetinaDepth.getVal(), 9);
00194 }
00195 
00196 // ######################################################################
00197 void SimulationViewerCompress::
00198 onSimEventSaccadeStatusEye(SimEventQueue& q, rutz::shared_ptr<SimEventSaccadeStatusEye>& e)
00199 {
00200   // all the analysis will be done in getTraj(), so that we don't have
00201   // to recompute the whole blur mask at every eye movement
00202   // sample. Hence, here we just queue up the eye positions received:
00203   itsEyeData.push_back(e->position());
00204 }
00205 
00206 // ######################################################################
00207 Image< PixRGB<byte> > SimulationViewerCompress::getTraj(SimEventQueue& q)
00208 {
00209   Dims dims = itsMultiTraj[0].getDims(); // input image dims
00210 
00211   // let's get the current normalized (values in 0..255) saliency map:
00212   Image<float> sm = getMap(q, true);
00213 
00214   // find the top itsNumFoveas salient locations; to this end, we will
00215   // find the max in sm, then use the FOAradius to draw a disk at the
00216   // top location, then loop as many times as we have foveas:
00217   Image<float> smf = rescaleOpt(sm, dims, itsDisplayInterp.getVal());
00218 
00219   // in this function, we merge two behaviors: if we have
00220   // subcomponents (i.e., SaccadeControllers), then we will work in a
00221   // mode where we have a bunch of foveas moving around. Otherwise, we
00222   // will use the saliency map as a continuous modulator of blur:
00223   Image<byte> msk;
00224   if (itsSC.size()) msk = getMaskSC(smf, q); else msk = getMaskSM(smf);
00225 
00226   // add this mask to our sliding average:
00227   if (itsCacheSize.getVal() > 0)  // using a sliding average cache
00228     {
00229       itsMask.push_back(msk);
00230 
00231       // are we on an I-frame? If so, update our itsCurrentMask, and use
00232       // it. Otherwise, use the current contents of itsCurrentMask:
00233       if (itsFrame % itsIFramePeriod.getVal() == 0) itsCurrentMask = itsMask.mean();
00234     }
00235   else
00236     itsCurrentMask = msk;  // just using instantaneous mask
00237 
00238   // update blur mask using TRM if needed, otherwise it's just itsCurrentMask:
00239   if (itsUseTRMmax.getVal() && itsBlurMask.initialized()) {
00240     // if a location is rapidly changing (high TRM value), we use the
00241     // value of itsCurrentMask for our blur; otherwise, we take the
00242     // min between itsCurrentMask and our accumulated itsBlurMask:
00243     Image<byte> minMask = takeMin(itsBlurMask, itsCurrentMask);
00244     if (SeC<SimEventTaskRelevanceMapOutput> e = q.check<SimEventTaskRelevanceMapOutput>(this, SEQ_ANY)) {
00245       Image<float> trm = rescaleOpt(e->trm(1.0F), dims, itsDisplayInterp.getVal());
00246       itsBlurMask = thresholdedMix(trm, 0.99F, minMask, itsCurrentMask);
00247     } else LFATAL("Cannot find a TRM!");
00248   } else itsBlurMask = itsCurrentMask;
00249 
00250   // we use the mean of our mask sliding average for a weighted blur:
00251   Image< PixRGB<byte> > traj = weightedBlur(itsBlurMask, itsMultiTraj);  // weighted blur
00252 
00253   // draw a patch at center of each fovea?
00254   if (itsDisplayPatch.getVal())
00255     {
00256       // select a drawing color & size:
00257       PixRGB<byte> col(itsColorNormal.getVal()); int psiz = 4 + 2*itsSC.size();
00258 
00259       // draw a patch at current position of each fovea:
00260       for (uint i = 0; i < itsSC.size(); i ++)
00261         if (itsIgnoreSC[i] == false) drawPatchBB(traj, itsSC[i]->getPreviousDecision(0).p, psiz-i*2, col);
00262     }
00263 
00264   // draw FOA outlines?
00265   if (itsDisplayFOA.getVal())
00266     {
00267       // select a drawing color & size:
00268       PixRGB<byte> col(itsColorNormal.getVal()); int thick = 3;
00269 
00270       Image<byte> om(itsCurrentMask);
00271       om = binaryReverse(om, byte(255));
00272       inplaceLowThresh(om, byte(220), byte(0)); // get the objects
00273       om = contour2D(om);          // compute binary contour image
00274       int w = traj.getWidth(), h = traj.getHeight();
00275       Point2D<int> ppp;
00276       for (ppp.j = 0; ppp.j < h; ppp.j ++)
00277         for (ppp.i = 0; ppp.i < w; ppp.i ++)
00278           if (om.getVal(ppp.i, ppp.j))  // got a contour point -> draw here
00279             drawDisk(traj, ppp, thick, col);  // small disk for each point
00280     }
00281 
00282   // prepare a full-size color version of the SM for our various markings:
00283   Image< PixRGB<byte> > colorsm = toRGB(Image<byte>(rescaleOpt(sm, dims, itsDisplayInterp.getVal())));
00284 
00285   // get the raw, unfoveated input image and paste it into an image with our dims:
00286   Image< PixRGB<byte> > rawinp2;
00287   if (SeC<SimEventInputFrame> e = q.check<SimEventInputFrame>(this)) rawinp2 = e->frame().asRgb();
00288   Image< PixRGB<byte> > rawinp(dims, NO_INIT); rawinp.clear(PixRGB<byte>(64));
00289   Point2D<int> rawinpoff((rawinp.getWidth() - rawinp2.getWidth())/2, (rawinp.getHeight() - rawinp2.getHeight())/2);
00290   inplacePaste(rawinp, rawinp2, rawinpoff);
00291 
00292   // do we want to compare to human eye movement data?
00293   if (itsOutFile)
00294     {
00295       // compute average blur for this frame:
00296       byte mi, ma, avg; getMinMaxAvg(itsCurrentMask, mi, ma, avg);
00297 
00298       // get the raw SM:
00299       Image<float> rawsm;
00300       if (SeC<SimEventSaliencyMapOutput> e = q.check<SimEventSaliencyMapOutput>(this, SEQ_ANY))
00301         rawsm = e->sm(1.0F); else LFATAL("Cannot find a SM!");
00302 
00303       // get the map level to scale things down:
00304       int sml = itsLevelSpec.getVal().mapLevel();
00305 
00306       // let's get the raw saliency map and a vector of all our
00307       // conspicuity maps and of their min/max/avg:
00308       std::vector< Image<float> > cmap;
00309       std::vector<float> cmi, cma, cav;
00310 
00311       // grab all the VisualCortex maps:
00312       rutz::shared_ptr<SimReqVCXmaps> vcxm(new SimReqVCXmaps(this));
00313       q.request(vcxm); // VisualCortex is now filling-in the maps...
00314       rutz::shared_ptr<ChannelMaps> chm = vcxm->channelmaps();
00315 
00316       // find out a window to use for our random values, which is
00317       // important in case we are doing input shifting with
00318       // --shift-input and apply a field of view with
00319       // --input-fov. In these cases, we want to take random samples
00320       // only withing the actual display area:
00321       Rectangle r = itsRawInputRectangle;
00322       //drawRect(colorsm, r, PixRGB<byte>(0, 255, 0), 2);
00323       //drawRect(traj, r, PixRGB<byte>(0, 255, 0), 2);
00324 
00325       // get a version of the rectangle scaled to SM dims:
00326       Rectangle rsm = Rectangle::tlbrI(r.top() >> sml, r.left() >> sml, r.bottomO() >> sml, r.rightO() >> sml);
00327       rsm = rsm.getOverlap(rawsm.getBounds());
00328 
00329       // let's get the raw saliency map and a vector of all our
00330       // conspicuity maps and of their min/max/avg:
00331       Image<float> cropsm = crop(rawsm, rsm);
00332       float rawsmmi, rawsmma, rawsmav;
00333       getMinMaxAvg(cropsm, rawsmmi, rawsmma, rawsmav);
00334 
00335       // now for all the top-level channel conspicuity maps:
00336       for (uint ii = 0; ii < chm->numSubchans(); ii ++) {
00337         Image<float> cm = chm->subChanMaps(ii)->getMap();
00338         if (cm.initialized() == false) cm.resize(rawsm.getDims(), true); // some channels may not have maps yet
00339         Image<float> cropmap = crop(cm, rsm);
00340         float ccmi, ccma, ccav;
00341         getMinMaxAvg(cropmap, ccmi, ccma, ccav);
00342         cmi.push_back(ccmi); cma.push_back(ccma); cav.push_back(ccav);
00343         cmap.push_back(cropmap);
00344       }
00345 
00346       // loop over all fixations that happened during current frame:
00347       while(itsEyeData.size()) {
00348         // pick a random location to get blur there:
00349         Point2D<int> rnd(randomUpToNotIncluding(itsCurrentMask.getWidth()),
00350                          randomUpToNotIncluding(itsCurrentMask.getHeight()));
00351 
00352         // get next eye fixation:
00353         Point2D<int> eye = itsEyeData.front(); itsEyeData.pop_front();
00354         eye.clampToDims(itsCurrentMask.getDims());
00355 
00356         // also scale down eye coords to sm level:
00357         Point2D<int> eyesm(eye.i >> sml, eye.j >> sml);
00358 
00359         // finally shift eyesm to reflect our crops of the sm and cmaps:
00360         eyesm.i -= rsm.left(); eyesm.j -= rsm.top();
00361         eyesm.clampToDims(cropsm.getDims());
00362 
00363         // do we want to draw it?
00364         if (itsDisplayEye.getVal())
00365           {
00366             // select a drawing color & size:
00367             PixRGB<byte> col(itsColorEye.getVal()); int psiz = 5;
00368             drawPatchBB(traj, eye, psiz, col);
00369             drawPatchBB(colorsm, eye, psiz, col);
00370 
00371             // grab the latest retina:
00372             Point2D<int> rieye;
00373             if (SeC<SimEventRetinaImage> e = q.check<SimEventRetinaImage>(this, SEQ_ANY))
00374               rieye = e->retinalToRaw(eye);
00375             else LFATAL("ooops, no retina image in the queue?");
00376             rieye += rawinpoff;
00377             drawPatchBB(rawinp, rieye, psiz, col);
00378           }
00379 
00380         fprintf(itsOutFile, "%d %d %d %d %d %d",
00381                 eye.i,                         // eye x position
00382                 eye.j,                         // eye y position
00383                 itsCurrentMask.getVal(eye),    // blur val at eye
00384                 mi,                            // min val of mask
00385                 ma,                            // max val of mask
00386                 avg);                          // average val of mask
00387 
00388         LINFO("eye pos and blur val at eye, mi, ma, avg:%d %d %d %d %d %d",
00389               eye.i, eye.j, itsCurrentMask.getVal(eye),mi,ma, avg);
00390         for(int k=0; k<itsNumRandomSamples.getVal(); k++)
00391           {
00392             Point2D<int> randp(randomUpToNotIncluding(itsCurrentMask.getWidth()),
00393                                randomUpToNotIncluding(itsCurrentMask.getHeight()));
00394             fprintf(itsOutFile, " %d", itsCurrentMask.getVal(randp));
00395           }
00396         fprintf(itsOutFile, "\n");
00397       }
00398     }
00399 
00400   // do we want a mega combo instead of the plain blurred image?
00401   if (itsSaveMegaCombo.getVal())
00402     {
00403       Image< PixRGB<byte> > ret =
00404         concatX(colGreyCombo(itsMultiTraj[0], rescaleOpt(sm, dims, itsDisplayInterp.getVal()), false),
00405                 colGreyCombo(traj, itsCurrentMask, false));
00406       drawGrid(ret, 2, 2, 2, PixRGB<byte>(128));
00407       return ret;
00408     }
00409 
00410   // do we want a mask only?
00411   if(itsSaveMask.getVal()) return itsCurrentMask;
00412 
00413   // do we want a foveated image  only?
00414   if(itsSaveFoveatedImage.getVal()) return traj;
00415 
00416   // do we want an eye combo?
00417   if (itsSaveEyeCombo.getVal())
00418     {
00419       Image< PixRGB<byte> > ret = concatX(concatX(rawinp, traj), colorsm);
00420       drawLine(ret, Point2D<int>(dims.w()-1, 0), Point2D<int>(dims.w()-1, dims.h()-1), PixRGB<byte>(255,255,0), 3);
00421       drawLine(ret, Point2D<int>(dims.w()*2-1, 0), Point2D<int>(dims.w()*2-1,dims.h()-1), PixRGB<byte>(255,255,0), 3);
00422 
00423       // make sure the size is reasonable...
00424       while(ret.getWidth() > 1024) ret = decXY(lowPass3(ret));
00425 
00426       return ret;
00427     }
00428 
00429   // otherwise return the blurred image:
00430   return traj;
00431 }
00432 
00433 // ######################################################################
00434 Image<byte> SimulationViewerCompress::getMaskSM(const Image<float>& smf)
00435 {
00436   // let's start by smoothing the interpolated salmap a bit:
00437   Image<float> maskf = lowPass9(smf);
00438 
00439   // let's squash the SM a bit. We downplay values below average and
00440   // give more range to those above average (with possible saturation):
00441   float mi, ma, av; getMinMaxAvg(maskf, mi, ma, av);
00442   maskf = squash(maskf, mi, mi, 0.5F*(av-mi), 0.55F*(av-mi), ma, ma);
00443 
00444   // make a blurring mask:
00445   Image<byte> mask = binaryReverse(maskf, 255.0F);  // will clamp to 0..255
00446 
00447   return mask;
00448 }
00449 
00450 // ######################################################################
00451 
00452 namespace
00453 {
00454   struct Point2DS
00455   {
00456     Point2DS(const Point2D<int>& pp, double ss) : p(pp), sal(ss) {}
00457 
00458     Point2D<int> p;
00459     double sal;
00460   };
00461 }
00462 
00463 Image<byte> SimulationViewerCompress::getMaskSC(const Image<float>& smf,
00464                                                 SimEventQueue& q)
00465 {
00466   ///////nub::ref<VisualCortex> vc = itsBrain->getVC();
00467   ////FIXME///nub::ref<ShapeEstimator> se = itsBrain->getSE();
00468 
00469   // violently reset the se:
00470   ////FIXME///se->reset(MC_RECURSE);
00471 
00472   // find the top salient locations; to this end, we will find the max
00473   // in sm, then use the FOAradius to draw a disk at the top location,
00474   // then loop. We will extract more locations than we have foveas, so
00475   // that we are robust to slight changes in saliency ordering:
00476   std::vector<Point2DS> topsal;  // will store saliency in 't' field
00477   Image<float> smff = smf;  // get a copy we can modify
00478   for (uint i = 0; i < itsSC.size() + 4; i ++) {
00479     // find max:
00480     Point2D<int> p; float sal; findMax(smff, p, sal);
00481 
00482     // store coords & saliency:
00483     topsal.push_back(Point2DS(p, double(sal)));
00484 
00485     // get object shape at that location, or revert to a disk of no object:
00486     ////FIXME///se->compute(p);
00487     Image<byte> objmask; ////FIXME/// = se->getSmoothMask() * 255.0F;
00488     if (objmask.initialized() == false) {
00489       objmask.resize(smff.getDims(), true);
00490       drawDisk(objmask, p, itsFOAradius.getVal(), byte(255));
00491     }
00492     // inhibit the sm by the object shape:
00493     inplaceSetValMask(smff, objmask, 0.0F);
00494   }
00495 
00496   // if this is our first time (itsFeatures is empty), just assign an
00497   // SC to each of the top salient locations:
00498   if (itsFeatures.empty())
00499     for (uint i = 0; i < itsSC.size(); i ++)
00500       {
00501         // feed the SC:
00502         itsSC[i]->setPercept(WTAwinner(topsal[i].p, q.now(), topsal[i].sal, false), q);
00503 
00504         // keep track of the features each SC is tracking:
00505         rutz::shared_ptr<SimReqVCXfeatures> ef(new SimReqVCXfeatures(this, topsal[i].p));
00506         q.request(ef); // VisualCortex is now filling-in the features into ef->features()
00507         itsFeatures.push_back(ef->features());
00508 
00509         LINFO("Initializing SC[%d] to (%d,%d)", i, topsal[i].p.i, topsal[i].p.j);
00510       }
00511   else
00512     {
00513       // let's get an idea of which features are important for
00514       // differentiating between our current foveas, and of what
00515       // their range is:
00516       std::vector<double> minf, maxf; uint nf = itsFeatures[0].size();
00517       for (uint i = 0; i < nf; i ++) { minf.push_back(1.0e50); maxf.push_back(-1.0e50); }
00518 
00519       for (uint fov = 0; fov < itsSC.size(); fov ++)
00520         for (uint i = 0; i < nf; i ++)
00521           {
00522             if (itsFeatures[fov][i] < minf[i]) minf[i] = itsFeatures[fov][i];
00523             if (itsFeatures[fov][i] > maxf[i]) maxf[i] = itsFeatures[fov][i];
00524           }
00525 
00526       // solve correspondence problem: Score each salient location with
00527       // respect to each SC, based on distance and feature similarity in a
00528       // neighborhood:
00529       Image<float> score(topsal.size(), itsSC.size(), NO_INIT);
00530       for (uint i = 0; i < topsal.size(); i ++)
00531         for (uint j = 0; j < itsSC.size(); j ++)
00532           {
00533             // how well does salient location 'i' score with fovea
00534             // 'j'? First let's look at distance; what counts then is
00535             // the distance to the target (=percept) of the SC, not to
00536             // where the SC currently is:
00537             Point2D<int> pi = topsal[i].p;
00538             Point2D<int> pj = itsSC[j]->getPreviousPercept(0).p;
00539             float dist = pi.distance(pj);
00540 
00541             // a distance of up to twice our FOA radius yields no penalty:
00542             if (dist < 2.0F * float(itsFOAradius.getVal())) dist = 0.0F;
00543 
00544             // normalize the distance to 0..1 range:
00545             dist /= sqrt(smf.getWidth() * smf.getWidth() + smf.getHeight() * smf.getHeight());
00546 
00547             // now look at feature similarity; to this end, we explore
00548             // a neighborhood of the salient location and see whether
00549             // we can find the features that the SC is interested in:
00550             std::vector<float> scf = itsFeatures[j];
00551             double fdist = 1.0e50;
00552             int ci = pi.i; if (ci & 1) ci --;
00553             int cj = pi.j; if (cj & 1) cj --;
00554             for (int jj = cj - 10; jj <= cj + 10; jj += 2)
00555               for (int ii = ci - 10; ii <= ci + 10; ii += 2)
00556                 {
00557                   Point2D<int> p(ii, jj);
00558                   if (smf.coordsOk(p))
00559                     {
00560                       // get a vector of features:
00561                       rutz::shared_ptr<SimReqVCXfeatures> ef(new SimReqVCXfeatures(this, p));
00562                       q.request(ef); // VisualCortex is now filling-in the features into ef->features()
00563                       const std::vector<float>& ff = ef->features();
00564 
00565                       // compute feature distance: get feature
00566                       // difference and normalize by feature range
00567                       // if range not too small:
00568                       double d = 0.0; int numf = 0;
00569                       for (uint k = 0; k < nf; k ++)
00570                         if (maxf[k] > minf[k] + 1.0)
00571                           {
00572                             double dd = (ff[k]-scf[k]) / (maxf[k]-minf[k]);
00573 
00574                             // accumulate compound feature distance:
00575                             d += dd * dd; numf ++;
00576                           }
00577 
00578                       // compute normalized weighted feature distance:
00579                       if (numf) d = sqrt(d / double(numf));
00580 
00581                       // if distance better than what we had, update:
00582                       if (d < fdist) fdist = d;
00583                     }
00584                 }
00585 
00586             // point distance and feature distance both contribute
00587             // to score. In addition, we add here a penalty for
00588             // changing the ordering of the SCs. Best possible score
00589             // is zero and all scores are negative, growing larger
00590             // negatively as they get worse:
00591             float sco = -
00592               float(dist * 100.0) -
00593               float(fdist * 0.5) -
00594               10.0F * fabs(float(i)-float(j)) +
00595               100.0F * topsal[i].sal / topsal[0].sal;
00596 
00597             score.setVal(i, j, sco);
00598             LINFO("[topsal(%d)(%d,%d), SC(%d)(%d,%d)]: dist=%f fdist=%f "
00599                   "score=%f", i, pi.i, pi.j, j, pj.i, pj.j, dist, fdist, sco);
00600           }
00601 
00602       // find the best score and assign the corresponding salient
00603       // location to the corresponding SC; then kill that SC in the
00604       // score map and loop until all SCs have been assigned:
00605       for (uint i = 0; i < itsSC.size(); i ++)
00606         {
00607           Point2D<int> best; float val; findMax(score, best, val);
00608           int bi = best.i;  // salient location
00609           int bj = best.j;  // saccade controller
00610 
00611           // set new percept to the winning SC:
00612           itsSC[bj]->setPercept(WTAwinner(topsal[bi].p, q.now(), topsal[bi].sal, false), q);
00613           // also assign new feature vector to that SC; even though
00614           // the best score may have been achieved for a neighbor of
00615           // the topsal location, we use as feature vector the one
00616           // from the topsal location:
00617           rutz::shared_ptr<SimReqVCXfeatures> ef(new SimReqVCXfeatures(this, topsal[bi].p));
00618           q.request(ef); // VisualCortex is now filling-in the features into ef->features()
00619           itsFeatures[bj] = ef->features();
00620 
00621           // done with this SC; let's make sure we will not pick it up again:
00622           for (int k = 0; k < score.getWidth(); k ++) score.setVal(k, bj, -1.0e30F);
00623 
00624           // also make sure we will not pick up that salient loc again:
00625           for (int k = 0; k < score.getHeight(); k ++) score.setVal(bi, k, -1.0e30F);
00626 
00627           LINFO("Assigned topsal[%d](%d,%d) to SC[%d](%d,%d)", bi, topsal[bi].p.i, topsal[bi].p.j, bj,
00628                 itsSC[bj]->getPreviousPercept(1).p.i, itsSC[bj]->getPreviousPercept(1).p.j);
00629         }
00630     }
00631 
00632   // evolve our SCs:
00633   for (uint i = 0; i < itsSC.size(); ++i) itsSC[i]->evolve(q);
00634 
00635   // run getDecision() on our SaccadeControllers:
00636   for (uint i = 0; i < itsSC.size(); ++i) itsSC[i]->getDecision(q, false);
00637 
00638   // create a mask with the object shapes at each SC:
00639   ///FIXME///se->reset(MC_RECURSE);  // violently reset the SE
00640   Image<float> maskf(smf.getDims(), ZEROS);
00641   for (uint i = 0; i < itsSC.size(); ++i)
00642     {
00643       // if we terminate this iteration early we will ignore this SC:
00644       itsIgnoreSC[i] = true;
00645 
00646       // get the current fixation for this SC:
00647       Point2DT p = itsSC[i]->getPreviousDecision(0);
00648       if (p.p.isValid() == false)
00649         { LINFO("Ignoring SC[%d] because coords (%d,%d) invalid", i, p.p.i, p.p.j); continue; }
00650 
00651       // if salience was very low, don't bother using this SC:
00652       if (smf.getVal(itsSC[i]->getPreviousPercept(0).p) < topsal[0].sal*0.05)
00653         { LINFO("Ignoring SC[%d] because salience too low", i); continue; }
00654 
00655       // otherwise segment the object and mark it:
00656       ////FIXME///se->compute(p.p);
00657       Image<float> objf;////FIXME/// = se->getSmoothMask();
00658       if (objf.initialized()) maskf = takeMax(maskf, objf);
00659       else drawDisk(maskf, p.p, itsFOAradius.getVal(), 1.0F);
00660 
00661       // ok, we won't ignore this SC:
00662       itsIgnoreSC[i] = false;
00663     }
00664 
00665   // binarize the object mask:
00666   inplaceLowThresh(maskf, 0.5F, 0.0F);
00667 
00668   // create a distance map from the mask (this code similar to that in foveate()):
00669   float maxdist = std::max(smf.getWidth(), smf.getHeight()) * 2 * itsDistanceFactor.getVal();
00670   float scalefac = maxdist / 255.0f;
00671   maskf = chamfer34(maskf, maxdist) / scalefac;
00672 
00673   // if modulator does not contain any point at zero (inside object),
00674   // that means that the mask was empty, which is the case at the
00675   // beginning of a simulation. Set it to some intermediary value to
00676   // provide a uniform medium blur; otherwise, squash it:
00677   float mi, ma, av; getMinMaxAvg(maskf, mi, ma, av);
00678   if (mi > 0.0F) maskf /= 3.0F;
00679   else maskf = squash(maskf, mi, mi, 0.5F*(av-mi), 0.6F*(av-mi), ma, ma);
00680 
00681   // return byte version of the mask:
00682   Image<byte> mask = maskf;  // will clamp as necessary
00683   return mask;
00684 }
00685 
00686 // ######################################################################
00687 void SimulationViewerCompress::
00688 onSimEventSaveOutput(SimEventQueue& q, rutz::shared_ptr<SimEventSaveOutput>& e)
00689 {
00690   // update the trajectory:
00691   Image< PixRGB<byte> > res = getTraj(q);
00692 
00693   // save results?
00694   if (itsSaveTraj.getVal() || itsSaveMegaCombo.getVal() ||
00695       itsSaveEyeCombo.getVal() || itsSaveMask.getVal() || itsSaveFoveatedImage.getVal())
00696     {
00697       // get the OFS to save to, assuming sinfo is of type
00698       // SimModuleSaveInfo (will throw a fatal exception otherwise):
00699       nub::ref<FrameOstream> ofs = dynamic_cast<const SimModuleSaveInfo&>(e->sinfo()).ofs;
00700 
00701       ofs->writeRGB(res, "T", FrameInfo("SimulationViewerCompress trajectory", SRC_POS));
00702     }
00703 }
00704 
00705 // ######################################################################
00706 float SimulationViewerCompress::getSample(const Image<float>& smap,
00707                                           const Point2D<int>& p,
00708                                           const int radius) const
00709 {
00710   // ### disk version:
00711   Image<float> fov(smap.getDims(), ZEROS);
00712   drawDisk(fov, p, radius, 1.0F);
00713   fov *= smap;  // max smap by the disk
00714   float junk, salience;
00715   getMinMax(fov, junk, salience);
00716   return salience;
00717 
00718   // ### point version:
00719   //  return smap.getVal(p);
00720 }
00721 
00722 // ######################################################################
00723 float SimulationViewerCompress::
00724 getRandomSample(const Image<float>& smap, const int radius, const int n) const
00725 {
00726   float rndval = 0.0f;
00727   for (int i = 0; i < n; i ++)
00728     {
00729       Point2D<int> rndsm(randomUpToNotIncluding(smap.getWidth()), randomUpToNotIncluding(smap.getHeight()));
00730       rndval += getSample(smap, rndsm, radius);
00731     }
00732   return rndval / n;
00733 }
00734 
00735 // ######################################################################
00736 /* So things look consistent in everyone's emacs... */
00737 /* Local Variables: */
00738 /* indent-tabs-mode: nil */
00739 /* End: */
Generated on Sun May 8 08:41:04 2011 for iLab Neuromorphic Vision Toolkit by  doxygen 1.6.3