InferoTemporalSIFT.C

Go to the documentation of this file.
00001  /*!@file Neuro/InferoTemporalSIFT.C Object recognition module with SIFT */
00002 
00003 // //////////////////////////////////////////////////////////////////// //
00004 // The iLab Neuromorphic Vision C++ Toolkit - Copyright (C) 2001 by the //
00005 // University of Southern California (USC) and the iLab at USC.         //
00006 // See http://iLab.usc.edu for information about this project.          //
00007 // //////////////////////////////////////////////////////////////////// //
00008 // Major portions of the iLab Neuromorphic Vision Toolkit are protected //
00009 // under the U.S. patent ``Computation of Intrinsic Perceptual Saliency //
00010 // in Visual Environments, and Applications'' by Christof Koch and      //
00011 // Laurent Itti, California Institute of Technology, 2001 (patent       //
00012 // pending; application number 09/912,225 filed July 23, 2001; see      //
00013 // http://pair.uspto.gov/cgi-bin/final/home.pl for current status).     //
00014 // //////////////////////////////////////////////////////////////////// //
00015 // This file is part of the iLab Neuromorphic Vision C++ Toolkit.       //
00016 //                                                                      //
00017 // The iLab Neuromorphic Vision C++ Toolkit is free software; you can   //
00018 // redistribute it and/or modify it under the terms of the GNU General  //
00019 // Public License as published by the Free Software Foundation; either  //
00020 // version 2 of the License, or (at your option) any later version.     //
00021 //                                                                      //
00022 // The iLab Neuromorphic Vision C++ Toolkit is distributed in the hope  //
00023 // that it will be useful, but WITHOUT ANY WARRANTY; without even the   //
00024 // implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR      //
00025 // PURPOSE.  See the GNU General Public License for more details.       //
00026 //                                                                      //
00027 // You should have received a copy of the GNU General Public License    //
00028 // along with the iLab Neuromorphic Vision C++ Toolkit; if not, write   //
00029 // to the Free Software Foundation, Inc., 59 Temple Place, Suite 330,   //
00030 // Boston, MA 02111-1307 USA.                                           //
00031 // //////////////////////////////////////////////////////////////////// //
00032 //
00033 // Primary maintainer for this file: Sophie Marat
00034 // $HeadURL: svn://isvn.usc.edu/software/invt/trunk/saliency/src/Neuro/InferoTemporalSIFT.C $
00035 // $Id: InferoTemporalSIFT.C 14244 2010-11-17 02:56:14Z sophie $
00036 //
00037 
00038 #include "Neuro/InferoTemporalSIFT.H"
00039 
00040 #include "Component/OptionManager.H"
00041 #include "Component/ModelOptionDef.H"
00042 #include "Neuro/NeuroOpts.H"
00043 #include "Neuro/NeuroSimEvents.H"
00044 #include "Neuro/Brain.H"
00045 #include "Neuro/VisualCortex.H"
00046 #include "Neuro/ShapeEstimator.H"
00047 #include "Simulation/SimEventQueue.H"
00048 #include "Media/MediaSimEvents.H"
00049 #include "SIFT/Keypoint.H"
00050 #include "SIFT/VisualObject.H"
00051 #include "SIFT/VisualObjectDB.H"
00052 #include "Image/MathOps.H"
00053 #include "Image/ShapeOps.H"
00054 #include "Image/CutPaste.H"
00055 #include "Image/ColorOps.H"
00056 #include "Raster/Raster.H"
00057 #include "Image/DrawOps.H"
00058 #include "GUI/XWindow.H"
00059 #include "Channels/ChannelMaps.H"
00060 #include "Channels/ChannelOpts.H"
00061 #include "Channels/ChannelBase.H"
00062 #include "Channels/RawVisualCortex.H"
00063 #include "Component/ModelManager.H"
00064 #include "Channels/IntensityChannel.H"
00065 #include "Channels/ColorChannel.H"
00066 #include "Channels/OrientationChannel.H"
00067 #include "Channels/ChannelMaps.H"
00068 #include "Util/FileUtil.H"
00069 #include "Util/log.H"
00070 #include "Util/sformat.H"
00071 #include "Util/StringUtil.H"
00072 #include "Raster/Raster.H"
00073 
00074 #include "Image/Conversions.H"
00075 
00076 #include "Neuro/GistEstimatorStd.H"
00077 #include "Component/ModelManager.H"
00078 #include "Channels/ChannelMaps.H"
00079 #include "GUI/XWinManaged.H"
00080 #include "Image/FilterOps.H"
00081 #include "Image/MathOps.H"
00082 #include "Image/ShapeOps.H"
00083 #include "Neuro/gistParams.H"
00084 #include "Raster/Raster.H"
00085 #include "Simulation/SimEvents.H"
00086 #include "Channels/SingleChannel.H"
00087 #include "Util/Timer.H"
00088 
00089 #include "Component/RawGistEstimatorStd.H"
00090 
00091 #include "Learn/SVMClassifier.H"
00092 #include "Neuro/SVMClassifierModule.H"
00093 
00094 
00095 #include <cstdlib>
00096 #include <iostream>  
00097 #include <iomanip>
00098 #include <fstream>
00099 #include <cmath>
00100 #include <sstream>
00101 #include <dirent.h>
00102 
00103 
00104 const ModelOptionDef OPT_ITSIFTDatabase =
00105   { MODOPT_ARG_STRING, "ITC Database dir", &MOC_ITC, OPTEXP_CORE, 
00106     "Directory of the SIFT Database",
00107     "it-SIFT-database-dir", '\0', "<filename>", " "};
00108 const ModelOptionDef OPT_ITCMode =
00109   { MODOPT_ARG_STRING, "ITC Mode", &MOC_ITC, OPTEXP_CORE,
00110   "The mode of the ITC. Train: is for training from some data, Test is for recognition of the objects.", "it-mode", '\0', "<Train|Test>", ""};
00111 const ModelOptionDef OPT_ITPathMatch = 
00112   { MODOPT_ARG_STRING, "ITC Path Match", &MOC_ITC, OPTEXP_CORE,
00113     "The path of the objects to consider for matching",
00114     "it-SIFT-path-match", '\0', "<filename>", " "};
00115 const ModelOptionDef OPT_ITCoarseReco =
00116   { MODOPT_ARG(bool), "Use Gist Coarse Reco", &MOC_ITC, OPTEXP_CORE,
00117     "Use gist to do a coarse pre-recognition",
00118     "it-gist-reco", '\0', "<true|false>", "false" };
00119 
00120 const ModelOptionDef OPT_ITSVMTrain = 
00121   { MODOPT_ARG_STRING, "ITC SVM Train file save", &MOC_ITC, OPTEXP_CORE,
00122     "The filename where the training exemple for the SVM will be saved",
00123     "it-SVM-train-file", '\0', "<filename>", " "};
00124 const ModelOptionDef OPT_ITSVMId = 
00125   { MODOPT_ARG_STRING, "ITC Id for the SVM trainning", &MOC_ITC, OPTEXP_CORE,
00126     "the Id of the object trained on",
00127     "it-SVM-id", '\0', "<int>", ""};   
00128 const ModelOptionDef OPT_ITSVMClass = 
00129   { MODOPT_ARG_STRING, "ITC Class for the SVM trainning", &MOC_ITC, OPTEXP_CORE,
00130     "the class of the object trained on, Used to complete the table Id:Class",
00131     "it-SVM-class", '\0', "<name>", " "};   
00132 const ModelOptionDef OPT_ITSVMModel = 
00133   { MODOPT_ARG_STRING, "ITC SVM Model", &MOC_ITC, OPTEXP_CORE,
00134     "The SVM model to use for recognition",
00135     "it-SVM-model", '\0', "<filename>", " "};
00136 const ModelOptionDef OPT_ITSVMRange = 
00137   { MODOPT_ARG_STRING, "ITC SVM Range", &MOC_ITC, OPTEXP_CORE,
00138     "The range of the SVM model to rescale data before recognition",
00139     "it-SVM-range", '\0', "<filename>", " "};
00140 const ModelOptionDef OPT_ITSObjNameSVM = 
00141   { MODOPT_ARG_STRING, "ITC Obj Name", &MOC_ITC, OPTEXP_CORE,
00142     "The name of the object process for training svm",
00143     "it-SVM-obj-name", '\0', "<name>", " "};
00144 const ModelOptionDef OPT_ITSFileRecoSave = 
00145   { MODOPT_ARG_STRING, "ITC save reco res", &MOC_ITC, OPTEXP_CORE,
00146     "The file where the result of the recognition will be saved",
00147     "it-reco-save-file", '\0', "<filename>", " "};
00148 
00149 const ModelOptionDef OPT_ITSTable = 
00150   { MODOPT_ARG_STRING, "ITC save table", &MOC_ITC, OPTEXP_CORE,
00151     "Table of the different class and their Id",
00152     "it-table", '\0', "<filename>", " "};
00153 
00154  
00155 // ######################################################################
00156 namespace
00157 {
00158   Image<PixRGB<byte> > getCroppedObject(const Image<PixRGB<byte> >& scene,
00159                                         const Image<float>& smoothMask)
00160   {
00161     if (!scene.initialized())
00162       return Image<PixRGB<byte> >();
00163     if (!smoothMask.initialized())
00164       return Image<PixRGB<byte> >();
00165     const float threshold = 1.0f;
00166     const Rectangle r = findBoundingRect(smoothMask, threshold);
00167     return crop(scene, r);
00168   }  
00169   
00170   Image<PixRGB<byte> > getCroppedObjectGist(const Image<PixRGB<byte> >& scene,
00171                                             const Image<float>& smoothMask)
00172   {
00173     if (!scene.initialized())
00174       return Image<PixRGB<byte> >();
00175     if (!smoothMask.initialized())
00176       return Image<PixRGB<byte> >();
00177     const float threshold = 1.0f;
00178     Dims dimGist(256, 256);
00179     const Rectangle r = findBoundingRect(smoothMask, threshold);
00180     Point2D<int> rCenter = r.center();
00181     Rectangle rGist = Rectangle::centerDims(rCenter, dimGist);
00182     Image<PixRGB<byte> > imCrop;
00183     if (scene.rectangleOk(rGist))
00184       {
00185         imCrop = crop(scene, rGist);
00186         LINFO("-----------------------------the rectangle fits the image------------------------");
00187         LINFO("-------the image crop dim are W=%d, H=%d------------", imCrop.getWidth(), imCrop.getHeight());
00188       }
00189     else
00190       {
00191         int cx = rCenter.i;
00192         int cy = rCenter.j;
00193         int ttop = std::max(0, cy -dimGist.min()/2);
00194         int lleft = std::max(0, cx - dimGist.min()/2);
00195         int bbot = std::min(scene.getHeight() - 1, cy + dimGist.min()/2);
00196         int rright = std::min(scene.getWidth() - 1, cx + dimGist.min()/2);
00197         Rectangle rGistcrop = Rectangle::tlbrI(ttop, lleft, bbot, rright);
00198         imCrop = crop(scene, rGistcrop);
00199         LINFO("-------the rectangle is too large, computing gist around object on image------------");
00200         LINFO("-------the image crop dim are W=%d, H=%d------------", imCrop.getWidth(), imCrop.getHeight());
00201       }
00202     Image<PixRGB<byte> > imCropr;
00203     imCropr = rescaleBilinear(imCrop, 256, 256);
00204     return imCropr;
00205   }  
00206 }
00207 
00208 // ######################################################################
00209 
00210 InferoTemporalSIFT::InferoTemporalSIFT(OptionManager& mgr,
00211                                        const std::string& descrName,
00212                                        const std::string& tagName) :
00213   InferoTemporal(mgr, descrName, tagName),
00214   itsSIFTStoredDatabase(&OPT_ITSIFTDatabase, this),
00215   itsITCMode(&OPT_ITCMode, this),
00216   itsPathMatch(&OPT_ITPathMatch, this),
00217   itsCoarseReco(&OPT_ITCoarseReco, this),
00218   itsTrainSVM(&OPT_ITSVMTrain, this),
00219   itsSVMId(&OPT_ITSVMId, this),
00220   itsSVMClass(&OPT_ITSVMClass, this),
00221   itsSVMModel(&OPT_ITSVMModel, this),
00222   itsSVMRange(&OPT_ITSVMRange, this),
00223   itsNameObj(&OPT_ITSObjNameSVM, this), ///
00224   itsRecoSave(&OPT_ITSFileRecoSave, this),
00225   itsTable(&OPT_ITSTable, this), //
00226   itsObjectDB(new VisualObjectDB()),
00227   itsnewObjectDB(new VisualObjectDB()),
00228   itsPDFGist(new std::map<double, int>()),
00229   itsVisualCortex(new RawVisualCortex(mgr)),
00230   itsGistEstim(new RawGistEstimatorStd(mgr))//,
00231   //itsClassifier(new SVMClassifierModule(mgr, "", ""))
00232 {
00233   addSubComponent(itsVisualCortex);// otherwise there is only one raw visual cortex and so add the new channel to general and only one !
00234   LINFO("------------------------------before Set Model Param Val--------------------------");
00235   LINFO("------------------------------itsRaw VisualCortex chans = %s--------------------------", itsVisualCortex->getModelParamString("RawVisualCortexChans").c_str());
00236   //itsVisualCortex->setModelParamString("RawVisualCortexChans", "ICO"); //, MC_RECURSE);
00237   LINFO("------------------------------itsRaw VisualCortex chans = %s--------------------------", itsVisualCortex->getModelParamString("RawVisualCortexChans").c_str());
00238   LINFO("------------------------------after Set Model Param Val--------------------------");
00239   addSubComponent(itsGistEstim);
00240   // addSubComponent(itsClassifier);
00241 }
00242 
00243 // ######################################################################
00244 void InferoTemporalSIFT::start1()
00245 {
00246   if(itsSIFTStoredDatabase.getVal().compare("") == 0)
00247     {
00248       LFATAL("Must specify directory SIFT Database <dbname.vdb> using it-SIFT-database-dir");
00249     }
00250   if (itsSIFTStoredDatabase.getVal().empty())
00251     LINFO("Starting with empty visualObjectDB"); // already done above
00252   else
00253     {
00254       itsObjectDB->loadFrom(itsSIFTStoredDatabase.getVal());
00255       if(itsPathMatch.getVal().compare(" ") == 0)
00256         {
00257           LINFO("No path specified to match the object aigainst the whole database will be used");
00258           itsnewObjectDB = itsObjectDB;
00259         } 
00260     }  
00261   
00262   //itsVisualCortex->stop();
00263   LINFO("------------------------------before Set Model Param Val--------------------------");
00264   itsVisualCortex->setModelParamString("RawVisualCortexChans", "ICO"); //, MC_RECURSE);
00265   itsVisualCortex->subComponent("orientation")->setModelParamString("NumOrientations", "4");
00266   LINFO("------------------------------after Set Model Param Val--------------------------");
00267   //itsVisualCortex->start();
00268   LINFO("------------------------------after Set itsVisualCortexStart--------------------------");
00269 LINFO("------------------------------before Infero temporal start1--------------------------");
00270   LINFO("------------------------------itsRaw VisualCortex chans = %s--------------------------", itsVisualCortex->getModelParamString("RawVisualCortexChans").c_str());
00271   InferoTemporal::start1();
00272   LINFO("------------------------------itsRaw VisualCortex chans = %s--------------------------", itsVisualCortex->getModelParamString("RawVisualCortexChans").c_str());
00273   LINFO("------------------------------after Infero temporal start1--------------------------");
00274 
00275 
00276   //LINFO("------------------------------before Set Model Param Val--------------------------");
00277 //itsVisualCortex->setModelParamString("RawVisualCortexChans", "ICO"); //, MC_RECURSE);
00278   //LINFO("------------------------------after Set Model Param Val--------------------------");
00279 }
00280 
00281 // ######################################################################
00282 void InferoTemporalSIFT::stop1()
00283 {
00284   // save database if we have a filename for it:
00285   if (itsSIFTStoredDatabase.getVal().empty() == false)
00286     itsObjectDB->saveTo(itsSIFTStoredDatabase.getVal());
00287 }
00288 
00289 // ######################################################################
00290 InferoTemporalSIFT::~InferoTemporalSIFT()
00291 {
00292 }
00293 
00294 // ######################################################################
00295 void InferoTemporalSIFT::attentionShift(SimEventQueue& q,
00296                                             const Point2D<int>& location)
00297 
00298 {
00299   Image<PixRGB<byte> > objImg; 
00300   Image<PixRGB<byte> > objImgGist;
00301   
00302   // get the lastest input frame from the retina:
00303   if (SeC<SimEventRetinaImage> e = q.check<SimEventRetinaImage>(this, SEQ_ANY))
00304     { 
00305       // SEQ_ANY is a flag passed to SimEventQueue for returning any event marked or not
00306       objImg = e->frame().colorByte();
00307       objImgGist = objImg;
00308     }
00309   else 
00310     LFATAL("Oooops, no input frame in the event queue?");
00311   
00312   // get the latest smooth mask from the shape estimator:
00313   Image<float> smoothMask;
00314   if (SeC<SimEventShapeEstimatorOutput>
00315       e = q.check<SimEventShapeEstimatorOutput>(this, SEQ_ANY,0))
00316     {
00317       smoothMask = e->smoothMask();
00318     }
00319   else
00320     LINFO("no mask available");
00321   
00322   // create visual object and extract keypoints:
00323   rutz::shared_ptr<VisualObject> vo; 
00324   rutz::shared_ptr<TestImages::ObjData> objData; 
00325   
00326   ////////////////////////////////////////////////////////////////////////////
00327   //TRAIN MODE
00328   if (itsITCMode.getVal().compare("Train") == 0)
00329     {
00330       rutz::shared_ptr<TestImages::SceneData> sceneData;
00331 
00332       //Get the scene data, but don't mark it so we will get it on the next saccade  
00333       if (SeC<SimEventInputFrame> e = q.check<SimEventInputFrame>(this))//, SEQ_UNMARKED,0)) //////////////
00334         {
00335           GenericFrame gf =e->frame(); 
00336 
00337           LINFO("--------------------------------------------------------------------------");         
00338           LINFO("----------------Received the frame----------------------------------------------------------");         
00339           LINFO("--------------------------------------------------------------------------");         
00340 
00341           // XML INPUT
00342           if(gf.hasMetaData(std::string("SceneData")))
00343             {
00344               rutz::shared_ptr<GenericFrame::MetaData> metaData;
00345               metaData = gf.getMetaData(std::string("SceneData"));
00346               if (metaData.get() != 0)
00347                 {
00348                   sceneData.dyn_cast_from(metaData);
00349                   std::vector<TestImages::ObjData> objVect = sceneData->objects;
00350                   for(uint obj=0; obj<objVect.size(); obj++)
00351                     {
00352                       objData.reset(new TestImages::ObjData(objVect[obj]));
00353                       if (objData->polygon.size() > 0)
00354                         {
00355                           Point2D<int> upperLeft = objData->polygon[0];
00356                           Point2D<int> lowerRight = objData->polygon[0];
00357                           for(uint k=0; k<objData->polygon.size(); k++)
00358                             {
00359                               //find the bounds for the crop
00360                               if (objData->polygon[k].i < upperLeft.i) upperLeft.i = objData->polygon[k].i;
00361                               if (objData->polygon[k].j < upperLeft.j) upperLeft.j = objData->polygon[k].j;
00362                               if (objData->polygon[k].i > lowerRight.i) lowerRight.i = objData->polygon[k].i;
00363                               if (objData->polygon[k].j > lowerRight.j) lowerRight.j = objData->polygon[k].j;
00364                             }    
00365                           // crop around object using polygon
00366                           Image<PixRGB<byte> > objImgTr; 
00367                           objImgTr = crop(objImg, Rectangle::tlbrO(upperLeft.j,upperLeft.i,lowerRight.j,lowerRight.i));
00368 
00369                           //GIST
00370                           // Add the case for the gist on neighborhood
00371                           Dims dimGist(512, 512);
00372                           Rectangle r = Rectangle::tlbrO(upperLeft.j,upperLeft.i,lowerRight.j,lowerRight.i);
00373 
00374 
00375                           if(itsCoarseReco.getVal())
00376                             {
00377                               Point2D<int> rCenter = r.center();
00378                               Rectangle rGist = Rectangle::centerDims(rCenter, dimGist);
00379                               Image<PixRGB<byte> > objImgTrGist; 
00380                               objImgTrGist = crop(objImg, rGist);                           
00381                               computeGist(objImgTrGist);                           
00382                             }
00383 
00384                           //SIFT
00385                           vo.reset(new VisualObject("NewObject", "NewObjet", objImgTr));
00386                           vo->setName(objData->name);
00387                           vo->setImageFname(itsPathMatch.getVal().c_str() + objData->name + ".png");
00388                           if (itsObjectDB->addObject(vo))
00389                             LINFO("Added VisualObject '%s' to database", vo->getName().c_str());
00390                           else 
00391                             LERROR("FAILED adding VisualObject '%s' to database -- IGNORING",
00392                                    vo->getName().c_str());
00393                         }
00394                     }
00395                   rutz::shared_ptr<SimEventITOutput>
00396                     objDataEvent(new SimEventITOutput(this, objData));
00397                   q.post(objDataEvent);
00398                 }
00399             }
00400           else //IMAGE INPUT WITHOUT XML
00401             {
00402               // crop around object using mask
00403               objData.reset(new TestImages::ObjData);
00404               objImg = getCroppedObject(objImg, smoothMask);
00405               if (!objImg.initialized()) 
00406                 {
00407                   return; // no object image, so just do nothing
00408                 }
00409 
00410               //GIST
00411               if(itsCoarseReco.getVal())
00412                 {
00413                   objImgGist = getCroppedObjectGist(objImgGist, smoothMask);
00414                   computeGist(objImgGist);
00415                 }
00416 
00417               //SIFT
00418               std::string objName;
00419               if (itsNameObj.getVal().empty())
00420                 {
00421                   LINFO("Enter name for new object:"); //or [RETURN] to skip trainning:");
00422                   std::getline(std::cin, objName, '\n');
00423                 }
00424               else
00425                 objName = itsNameObj.getValString();///
00426               
00427               if (objName.length() >0)
00428                 {
00429                   vo.reset(new VisualObject("NewObject", "NewObjet", objImg));
00430                   LINFO("Train on %s", objName.c_str());
00431                   vo->setName(objName);
00432                   //vo->setImageFname(objName + ".png");
00433                   vo->setImageFname(itsPathMatch.getVal().c_str() + objName + ".png"); //for placing the obj.png at the right place in the taxonomy
00434                   //to draw the object considered
00435                   const float threshold = 1.0f;
00436                   const Rectangle r = findBoundingRect(smoothMask, threshold);
00437                   std::vector<Point2D<int> > polyvect(5);
00438                   polyvect[0] = r.topLeft();
00439                   polyvect[1] = r.topRight();
00440                   polyvect[2] = r.bottomRight();
00441                   polyvect[3] = r.bottomLeft();
00442                   polyvect[4] = r.topLeft();
00443                   objData->polygon  = polyvect; //std::vector<Point2D<int> >
00444                   objData->name     =objName;
00445                   objData->dims     = objImg.getDims();
00446                 }
00447               if (itsObjectDB->addObject(vo))
00448                 LINFO("Added VisualObject '%s' to database", vo->getName().c_str());
00449               else
00450                 LERROR("FAILED adding VisualObject '%s' to database -- IGNORING",
00451                        vo->getName().c_str());
00452 
00453               rutz::shared_ptr<SimEventITOutput>
00454                 objDataEvent(new SimEventITOutput(this, objData));
00455               q.post(objDataEvent);
00456             } 
00457         }
00458 
00459       std::ofstream tableN(itsTable.getValString().c_str(), std::ios::out | std::ios::app);
00460       if (tableN)
00461         {
00462           tableN << itsSVMClass.getValString() << " " << ":" << " " << itsSVMId.getValString() << " " << std::endl;
00463         }
00464       tableN.close();
00465       //Add a test to add only neww entry in the table
00466 
00467 
00468    
00469     }//END TRAINING MODE
00470   
00471   //TESTING MODE
00472   else if(itsITCMode.getVal().compare("Test") == 0)
00473     {
00474       LINFO("--------------------------Enter testing Mode---------------------");
00475 
00476       // crop around object using mask to compute SIFT around WTA winner
00477       objImg = getCroppedObject(objImg, smoothMask);
00478       if (!objImg.initialized()) 
00479         {
00480           return; // no object image, so just do nothing
00481         }
00482 
00483       //GIST
00484       if(itsCoarseReco.getVal())
00485         {
00486           objImgGist = getCroppedObjectGist(objImgGist, smoothMask);
00487           computeGist(objImgGist);      
00488           bool testFind = 0;
00489           std::map<double, int>::reverse_iterator iteratorPDFGist = itsPDFGist->rbegin();
00490           float tresholdSIFT = 1.50; //arbitrary 
00491           std::string nameMatchSIFT;
00492           while (testFind == 0 && iteratorPDFGist != itsPDFGist->rend())
00493             {
00494               gistSelect(iteratorPDFGist);
00495               
00496               //SIFT
00497               objData.reset(new TestImages::ObjData);;
00498               vo.reset(new VisualObject("NewObject", "NewObjet", objImg));
00499               //get the matching objects:
00500               std::vector< rutz::shared_ptr<VisualObjectMatch> > matches;
00501               const uint nmatches = itsnewObjectDB->getObjectMatchesParallel(vo, matches, VOMA_KDTREEBBF); 
00502               //use kd-tree fast but approximate for matching
00503               //const uint nmatches = itsObjectDB->getObjectMatches(vo, matches, VOMA_KDTREEBBF); 
00504               LINFO("the number of potemtial matches are = %d", nmatches);
00505               if (nmatches == 0U)
00506                 {
00507                   iteratorPDFGist ++;
00508                   nameMatchSIFT = "No_Match";
00509                 }
00510               else
00511                 {
00512                   rutz::shared_ptr<VisualObjectMatch> vomOne = matches[0];
00513                   if (vomOne->getScore() > tresholdSIFT)
00514                     {
00515                       testFind=1;
00516                       rutz::shared_ptr<VisualObject> objSIFT = vomOne->getVoTest();
00517                       nameMatchSIFT = objSIFT->getName();
00518                       LINFO("----------------------object recognized with score %f-----------------", vomOne->getScore());
00519                     }
00520                   else
00521                     {
00522                       iteratorPDFGist ++;
00523                       nameMatchSIFT = "No_Match";
00524                       LINFO("------------------the SIFT score is not sufficient---------------");
00525                     }
00526                 }
00527               
00528               if (testFind==1 || iteratorPDFGist==itsPDFGist->rend());
00529               {
00530                 //to draw the polygon 
00531                 const float threshold = 1.0f;
00532                 const Rectangle r = findBoundingRect(smoothMask, threshold);
00533                 std::vector<Point2D<int> > polyvect(5);
00534                 polyvect[0] = r.topLeft();
00535                 polyvect[1] = r.topRight();
00536                 polyvect[2] = r.bottomRight();
00537                 polyvect[3] = r.bottomLeft();
00538                 polyvect[4] = r.topLeft();
00539                 objData->polygon = polyvect; //std::vector<Point2D<int> >
00540    
00541                 //if no match, forget it:
00542                 if (nmatches ==0U)
00543                   {
00544                     objData->name = "No Match"; //string
00545                     objData->maxProb = 0;
00546                     objData->dims = objImg.getDims();
00547                   }
00548                 else
00549                   { 
00550                     //record the result of the 1rst match found 
00551                     rutz::shared_ptr<VisualObjectMatch> voms = matches[0];
00552                     rutz::shared_ptr<VisualObject> objs = voms->getVoTest(); //get the visual object
00553                     objData->name        = objs->getName(); //string
00554                     objData->maxProb     = voms->getScore(); //double
00555                     objData->dims        = objImg.getDims(); //dims
00556                   }               
00557                 rutz::shared_ptr<SimEventITOutput>
00558                   objDataEvent(new SimEventITOutput(this, objData));
00559                 q.post(objDataEvent);
00560               }
00561             }
00562 
00563           std::ofstream recoOutputFile(itsRecoSave.getValString().c_str(), std::ios::out | std::ios::app);
00564           if(recoOutputFile)
00565             {
00566               recoOutputFile << nameMatchSIFT << std::endl;
00567               recoOutputFile.close();            
00568             }
00569 
00570         }
00571       else
00572         {
00573           //SIFT without gist
00574           std::string nameMatchSIFT;
00575           objData.reset(new TestImages::ObjData);;
00576           vo.reset(new VisualObject("NewObject", "NewObjet", objImg));
00577           //get the matching objects:
00578           std::vector< rutz::shared_ptr<VisualObjectMatch> > matches;
00579           const uint nmatches = itsnewObjectDB->getObjectMatchesParallel(vo, matches, VOMA_KDTREEBBF); 
00580           //use kd-tree fast but approximate for matching
00581           //const uint nmatches = itsObjectDB->getObjectMatches(vo, matches, VOMA_KDTREEBBF); 
00582           const float threshold = 1.0f;
00583           const Rectangle r = findBoundingRect(smoothMask, threshold);
00584           std::vector<Point2D<int> > polyvect(5);
00585           polyvect[0] = r.topLeft();
00586           polyvect[1] = r.topRight();
00587           polyvect[2] = r.bottomRight();
00588           polyvect[3] = r.bottomLeft();
00589           polyvect[4] = r.topLeft();
00590           objData->polygon = polyvect; //std::vector<Point2D<int> >
00591 
00592           LINFO("the number of potemtial matches are = %d", nmatches);
00593           if (nmatches == 0U)
00594             {
00595               nameMatchSIFT = "No_Match";
00596             }
00597           else
00598             {
00599               rutz::shared_ptr<VisualObjectMatch> vomOne = matches[0];
00600               rutz::shared_ptr<VisualObject> objSIFT = vomOne->getVoTest();
00601               nameMatchSIFT = objSIFT->getName();
00602               LINFO("----------------------object recognized with score %f-----------------", vomOne->getScore());
00603               
00604               //to draw the polygon 
00605               const float threshold = 1.0f;
00606               const Rectangle r = findBoundingRect(smoothMask, threshold);
00607               std::vector<Point2D<int> > polyvect(5);
00608               polyvect[0] = r.topLeft();
00609               polyvect[1] = r.topRight();
00610               polyvect[2] = r.bottomRight();
00611               polyvect[3] = r.bottomLeft();
00612               polyvect[4] = r.topLeft();
00613               objData->polygon = polyvect; //std::vector<Point2D<int> >
00614             }
00615           
00616           //if no match, forget it:
00617           if (nmatches ==0U)
00618             {
00619               objData->name = "No Match"; //string
00620               objData->maxProb = 0;
00621               objData->dims = objImg.getDims();
00622             }
00623           else
00624             { 
00625               //record the result of the 1rst match found 
00626               rutz::shared_ptr<VisualObjectMatch> voms = matches[0];
00627               rutz::shared_ptr<VisualObject> objs = voms->getVoTest(); //get the visual object
00628               objData->name        = objs->getName(); //string
00629               objData->maxProb     = voms->getScore(); //double
00630               objData->dims        = objImg.getDims(); //dims
00631             }   
00632           rutz::shared_ptr<SimEventITOutput>
00633             objDataEvent2(new SimEventITOutput(this, objData));
00634           q.post(objDataEvent2);
00635           std::ofstream recoOutputFile(itsRecoSave.getValString().c_str(), std::ios::out | std::ios::app);
00636           if(recoOutputFile)
00637             {
00638               recoOutputFile << nameMatchSIFT << std::endl;
00639               recoOutputFile.close();            
00640             }
00641         }
00642     }
00643   else
00644     LFATAL("Unknown IT Mode type %s", itsITCMode.getVal().c_str());
00645 }
00646 
00647  // ######################################################################
00648  std::string InferoTemporalSIFT::getObjNameAtLoc(const std::vector<TestImages::ObjData> &objects, const Point2D<int>& loc)
00649  {
00650    //will be usefull for comparison with the ground truth given with a XML file given
00651    for(uint obj=0; obj<objects.size(); obj++)
00652      {
00653        TestImages::ObjData objData = objects[obj];
00654        //uint nbobjtoreco = objects.size();
00655        
00656        //find the object dimention from the polygon
00657        if (objData.polygon.size() > 0)
00658          {
00659            Point2D<int> upperLeft = objData.polygon[0];
00660            Point2D<int> lowerRight = objData.polygon[0];
00661            for(uint i=0; i<objData.polygon.size(); i++)
00662              {
00663                //find the bounds for the crop
00664                if (objData.polygon[i].i < upperLeft.i) upperLeft.i = objData.polygon[i].i;
00665                if (objData.polygon[i].j < upperLeft.j) upperLeft.j = objData.polygon[i].j;
00666                if (objData.polygon[i].i > lowerRight.i) lowerRight.i = objData.polygon[i].i;
00667                if (objData.polygon[i].j > lowerRight.j) lowerRight.j = objData.polygon[i].j;
00668              }
00669            //check if point is within the polygon
00670            for(int y=upperLeft.j; y<lowerRight.j; y++)
00671              for(int x=upperLeft.i; x<lowerRight.i; x++)
00672                {
00673                  if (pnpoly(objData.polygon, loc))
00674                    return objData.name;
00675                }
00676          }
00677      }
00678    return std::string("Unknown");
00679  }
00680 
00681  //vo.reset(new VisualObject("NewObject", "NewObjet", objImg));
00682 
00683  // ######################################################################
00684 void InferoTemporalSIFT::getObjDBToMatch(const char *dir)
00685  {
00686    LINFO("filename is %s",  dir);
00687    if (isDirectory(dir))
00688      {
00689        LINFO("---------------------------------Directory not folder--------------------------");
00690        DIR *dp = opendir(dir);
00691        dirent *dirp;
00692        while( (dirp = readdir(dp)) )
00693          {
00694            if(dirp->d_name[0] != '.')
00695              {
00696                //std::string fil = dir;
00697                //fil.append(dirp->d_name);
00698                std::string fil = sformat("%s%s", dir, dirp->d_name);
00699                if (isDirectory(dirp))
00700                  {
00701                    getObjDBToMatch(fil.c_str());
00702                  }
00703                else
00704                  {
00705                    std::string lobjName = fil.c_str();
00706                    LINFO("--------------------the path name loaded is %s----------------------", fil.c_str());
00707                    //the depth of the taxonomy should be 2 file/class/item
00708                    //objname in the format taxonomy:class:item
00709                    lobjName = lobjName.erase(lobjName.rfind("."), lobjName.size()); //remove .png
00710                    std::string item = lobjName;
00711                    item = item.erase(item.find("/"), item.rfind("/")+1);
00712                    std::string auxname = lobjName;
00713                    auxname = auxname.erase(auxname.rfind("/"), auxname.size());
00714                    std::string classobj = auxname;
00715                    classobj = classobj.erase(classobj.find("/"), classobj.rfind("/")+1);
00716                    auxname = auxname.erase(auxname.rfind("/"), auxname.size());
00717                    std::string taxoname = auxname;
00718                    taxoname = taxoname.erase(taxoname.find("/"), taxoname.rfind("/")+1);
00719                    //objName = objName.erase(objName.find("/"), objName.rfind("/")+1);
00720                    
00721                    std::string objName = taxoname;
00722                    objName.append(":");
00723                    objName.append(classobj);
00724                    objName.append(":");
00725                    objName.append(item); 
00726                    //create a new visual object database with only the object that belong to the path
00727                    //itsnewObjectDB->addObject(itsObjectDB->getObject(objName));
00728 
00729                    rutz::shared_ptr<VisualObject> myvo;
00730                    myvo = itsObjectDB->getObject(objName);
00731                    //LINFO("--------------------------getobj 1 num %u------------------------", itsObjectDB->numObjects());
00732                    itsnewObjectDB->addObject(myvo);
00733                  }
00734              } //check add all the object to the visualObjectDB
00735          }
00736        closedir(dp);
00737      }
00738    else
00739      {
00740        std::string filb = sformat("%s", dir);
00741        std::string objName = filb.c_str();
00742        objName = objName.erase(objName.rfind("."), objName.size());
00743        objName = objName.erase(objName.find("/"), objName.rfind("/")+1);
00744        //create a new visual object database with only the object that belong to the path
00745        itsnewObjectDB->addObject(itsObjectDB->getObject(objName));
00746      }
00747  }
00748 
00749 // ######################################################################
00750 void InferoTemporalSIFT::computeGist(Image<PixRGB<byte> > objImg)
00751 {
00752 
00753   LINFO("--------------------------Enter compute Gist ---------------------");
00754   LINFO("------------------------------------------------------------------");
00755   //itsVisualCortex->subComponent("orientation")->setModelParamVal("NumOrientations", 4);  
00756 LINFO("-------------------------Before resetting itsVisualCortex----------------------------------------");
00757 LINFO("------------------------------itsRaw VisualCortex chans = %s--------------------------", itsVisualCortex->getModelParamString("RawVisualCortexChans").c_str());
00758   itsVisualCortex->reset(MC_RECURSE);
00759   LINFO("-------------------------After resetting itsVisualCortex----------------------------------------");
00760 LINFO("------------------------------itsRaw VisualCortex chans = %s--------------------------", itsVisualCortex->getModelParamString("RawVisualCortexChans").c_str());
00761   LINFO("------------------------------------------------------------------");
00762   //itsVisualCortex->setModelParamVal("RawVisualCortexChans", "ICO", MC_RECURSE);
00763  
00764   InputFrame imgIn = InputFrame::fromRgb(&objImg); 
00765   //INFO("--------------------------S test Cropped obj 4 ---------------------");
00766   //LINFO("--------------------------Size objImg H=%d W=%d ---------------------", objImg.getHeight(), objImg.getWidth());
00767 
00768   Image<float> vcomap = itsVisualCortex->getVCOutput(objImg);
00769  LINFO("Sophie:------------------------the Raw VC Output has for dim H=%d and W=%d----------------------", vcomap.getHeight(), vcomap.getWidth());
00770 
00771   // WORKS but comment to check the pyramide size
00772   rutz::shared_ptr<ChannelMaps> chMaps(new ChannelMaps(itsVisualCortex.get()));
00773   LINFO("------------get all the %u channel maps at the same time---------",chMaps->numSubchans());
00774 
00775   //debug
00776   for(uint i=0; i < chMaps->numSubchans(); i++)
00777     {
00778       //Grab the current channel
00779       rutz::shared_ptr<ChannelMaps> currChan = chMaps->subChanMaps(i);
00780       //Determine the name of the channel
00781       std::vector<std::string> chanNameVec;
00782       split(currChan->getMap().name(), ":", std::back_inserter(chanNameVec));
00783       std::string chanName = chanNameVec[1];
00784       LINFO("------------------------------------channel Map name is %s------------------------", chanName.c_str());
00785       LINFO("------------------------------------channel Map has %u subchans ------------------------", currChan->numSubchans());
00786       for(uint k=0; k < currChan->numSubchans(); k++)
00787         {
00788           rutz::shared_ptr<ChannelMaps> subsubchan = currChan->subChanMaps(k);
00789           //Determine the name of the channel
00790           std::vector<std::string> subchanNameVec;
00791           split(subsubchan->getMap().name(), ":", std::back_inserter(subchanNameVec));
00792           std::string subchanName = subchanNameVec[1];
00793           LINFO("------------------------------------sub channel Map name is %s------------------------", subchanName.c_str());
00794         }
00795       
00796     }
00797 
00798 
00799 
00800 
00801 
00802   
00803   // gist feature vector
00804   Image<float> gistVector;
00805   gistVector = itsGistEstim->compute(chMaps);
00806   int idOb;
00807   std::string objName;
00808 
00809   LINFO("----------the gist has been computed-------------------------------");
00810   
00811   if(itsITCMode.getVal().compare("Train") == 0)
00812     {
00813       //to save the image crop used to compute the Gist
00814       /*std::string fileGist;
00815       fileGist = "/lab/sophie/SIFT_Gist_Darpa/results/Crop_Gist/";
00816       fileGist.append(itsNameObj.getValString());
00817       fileGist.append("_cropGist.png");
00818       Raster::WriteRGB(objImg,fileGist);
00819       */
00820 
00821       std::string objId;    
00822       idOb = atof(itsSVMId.getValString().c_str());
00823     }
00824   else
00825     {
00826       idOb = 0;
00827       //objName = "";
00828     }
00829   std::vector<float> vectGist(714);
00830   getVectorColumn(gistVector, &vectGist, 0);
00831     
00832 
00833   //Classifier
00834   SVMClassifier objClassifier;  
00835   if(itsITCMode.getVal().compare("Train") == 0)
00836     {
00837       objClassifier.train(itsTrainSVM.getValString(), idOb, vectGist);
00838     }
00839   if(itsITCMode.getVal().compare("Test") == 0)
00840     {   
00841       LINFO("------------------");
00842       objClassifier.readModel(itsSVMModel.getValString());
00843       objClassifier.readRange(itsSVMRange.getValString());
00844       double labelP;
00845       double probaP;
00846       labelP = objClassifier.predict(vectGist, &probaP);
00847       
00848       LINFO("----------------------------the label of the object is %f, with a probablility=%f--------------", labelP, probaP);
00849       
00850       std::map<int, double> pdf = objClassifier.predictPDF(vectGist);
00851       std::vector<int> labelVal;
00852       for(std::map<int,double>::iterator pdfIt = pdf.begin(); pdfIt != pdf.end(); ++pdfIt)
00853         {
00854           labelVal.push_back(pdfIt->first);
00855           itsPDFGist->insert(std::make_pair(pdfIt->second, pdfIt->first));
00856           //LINFO("-----------------pdfitsecond %f   pdfitfirst %d -------------", pdfIt->second, pdfIt->first);// debug
00857         }
00858       //bool testmap2 = itsPDFGist->empty();
00859       //LINFO("------------------------------map is empty %d --------------------------", testmap2);
00860       unsigned int nbLabel = labelVal.size();
00861       LINFO("------------------------There is %d differnt label--------------------", nbLabel);
00862       std::ofstream recoOutputFile(itsRecoSave.getValString().c_str(), std::ios::out | std::ios::app);
00863       if(recoOutputFile)
00864         {
00865           recoOutputFile << itsSVMId.getValString() << " " << itsNameObj.getValString() << " " << labelP << " " ;
00866                 
00867           for(unsigned int it=0; it < labelVal.size(); ++it)
00868             {
00869               int itlabel = labelVal[it];
00870               double valproba = pdf[itlabel];
00871               recoOutputFile << itlabel << ":" << valproba << " ";
00872               //LINFO("-----------------the object %d is belonging to category %d with proba=%f-------------", idOb, itlabel, valproba);
00873             } 
00874           recoOutputFile.close();
00875         }
00876    
00877       //test new map
00878       std::vector<int> Valbis;
00879       for (std::map<double, int>::iterator ite = itsPDFGist->begin(); ite != itsPDFGist->end(); ++ite)
00880         {
00881           Valbis.push_back(ite->first);
00882           // LINFO("-----------------the value %f is from the category  %d ------------",ite->first, ite->second);        
00883         }
00884      
00885     } 
00886 }
00887 
00888 // ######################################################################
00889 
00890 void  InferoTemporalSIFT::gistSelect(std::map<double, int>::reverse_iterator iteratorPDFGist)
00891 {
00892    std::map<int, std::string> tableIdClass;
00893   std::ifstream tableNa(itsTable.getValString().c_str(), std::ios::in);
00894    
00895   if (tableNa)
00896     {
00897       while( !tableNa.eof() )
00898         {       
00899           int Id;
00900           std::string categ;
00901           std::string aux;
00902           // std::getline(std::cin, objName, '\n');
00903           tableNa >> categ >> aux >> Id;
00904           tableIdClass.insert(std::make_pair(Id, categ));
00905           // LINFO("---------------------------------categ=%s---------------------", categ.c_str());
00906           //LINFO("---------------------------------id=%d---------------------", Id);
00907         }
00908       tableNa.close();
00909     }
00910 
00911   std::string filenamerecogist;
00912   
00913   //loop on map to find the matching point
00914   //possibility to add trick as the map will be sort by Id
00915   bool resF = 0;
00916   
00917 std::map<int,std::string>::iterator tabIt = tableIdClass.begin(); 
00918  while (tabIt != tableIdClass.end() && resF == 0)
00919    {
00920      LINFO("------------------------gist said %d--------------------------", iteratorPDFGist->second);
00921      LINFO("------------------------comparing to %d %s--------------------------", tabIt->first, tabIt->second.c_str());
00922 
00923      if(iteratorPDFGist->second == tabIt->first)
00924        {
00925          resF = 1;
00926          filenamerecogist = itsPathMatch.getValString();
00927          //filenamerecogist.append("/");
00928          //FOR THE DEMO NOT REAL TAXONOMY!!
00929          //if (tabIt->second =="candy" || tabIt->second =="tea")
00930          //  filenamerecogist = filenamerecogist.append("food/");
00931          //else if (tabIt->second=="case" || tabIt->second=="lotion")
00932          //  filenamerecogist = filenamerecogist.append("object/");
00933          //else
00934          //  filenamerecogist = filenamerecogist.append("document/");
00935          
00936          filenamerecogist.append(tabIt->second);  //itsSVMClass.getValString());
00937          filenamerecogist.append("/");
00938          //LINFO("-------------------------------filenameRecogist-----------------------%s----------------------------", filenamerecogist.c_str());
00939             }
00940      else if(iteratorPDFGist->second < tabIt->first)
00941        {
00942          LINFO("------------------------ERROR NO MATCH FOUND CHECK THE TABLE IS NOT CORRECT---------------------");
00943          tabIt ++;
00944        }
00945      else
00946        {
00947          tabIt ++;
00948          LINFO("------just test the other class----");
00949        }
00950    }
00951  
00952  LINFO("--------------try to match with SIFT-------");
00953  
00954  getObjDBToMatch(filenamerecogist.c_str());
00955     
00956    
00957     
00958     
00959   }
00960 
00961 
00962 // ######################################################################
00963 /* So things look consistent in everyone's emacs... */
00964 /* Local Variables: */
00965 /* indent-tabs-mode: nil */
00966 /* End: */
00967 
Generated on Sun May 8 08:41:03 2011 for iLab Neuromorphic Vision Toolkit by  doxygen 1.6.3